Chapter 15, Problem 68
The water–gas shift reaction CO1g2 + H2O1g2Δ CO21g2 + H21g2 is used industrially to produce hydrogen. The reaction enthalpy is H = -41 kJ. (b) Could you increase the equilibrium yield of hydrogen by controlling the pressure of this reaction? If so would high or low pressure favor formation of H2(g)?
Video transcript
Methanol (CH3OH) can be made by the reaction of CO with H2: CO(𝑔) + 2 H2(𝑔) ⇌ CH3OH(𝑔) (b) To maximize the equilibrium yield of methanol, would you use a high or low temperature?
Methanol (CH3OH) can be made by the reaction of CO with H2: CO(𝑔) + 2 H2(𝑔) ⇌ CH3OH(𝑔) (c) To maximize the equilibrium yield of methanol, would you use a high or low pressure?
Ozone, O3, decomposes to molecular oxygen in the stratosphere according to the reaction 2 O31g2¡3 O21g2. Would an increase in pressure favor the formation of ozone or of oxygen?
(a) Is the dissociation of fluorine molecules into atomic fluorine, F2(𝑔) ⇌ 2 F(𝑔), an exothermic or endothermic process?
(b) If the temperature is raised by 100 K, does the equilibrium constant for this reaction increase or decrease?
When 2.00 mol of SO2Cl2 is placed in a 2.00-L flask at 303 K, 56% of the SO2Cl2 decomposes to SO2 and Cl2: SO2Cl2(𝑔) ⇌ SO2(𝑔) + Cl2(𝑔) (a) Calculate 𝐾𝑐 for this reaction at this temperature.