Chapter 15, Problem 92e
Consider the hypothetical reaction A(π) + 2ββB(π) β 2 C(π), for which πΎπ = 0.25 at a certain temperature. A 1.00-L reaction vessel is loaded with 1.00 mol of compound C, which is allowed to reach equilibrium. Let the variable x represent the number of mol/L of compound A present at equilibrium. (e) From the plot in part (d), estimate the equilibrium concentrations of A, B, and C. (Hint: You can check the accuracy of your answer by substituting these concentrations into the equilibrium expression.)
Video transcript
At 900 Β°C, πΎπ = 0.0108 for the reaction
CaCO3(π ) β CaO(π ) + CO2(π)
A mixture of CaCO3, CaO, and CO2 is placed in a 10.0-L vessel at 900Β°C. For the following mixtures, will the amount of CaCO3 increase, decrease, or remain the same as the system approaches equilibrium?
(c) 30.5 g CaCO3, 25.5 g CaO, and 6.48 g CO2
The equilibrium constant constant πΎπ for C(π ) + CO2(π) β 2 CO(π) is 1.9 at 1000 K and 0.133 at 298 K. (b) If excess C is allowed to react with 25.0 g of CO2 in a 3.00-L vessel at 1000 K, how many grams of C are consumed?
At 700 K, the equilibrium constant for the reaction CCl4(π) β C(π ) + 2 Cl2(π) is πΎπ = 0.76. A flask is charged with 2.00 atm of CCl4, which then reaches equilibrium at 700 K. (b) What are the partial pressures of CCl4 and Cl2 at equilibrium?
At a temperature of 700 K, the forward and reverse rate constants for the reaction 2 HI(π) β H2(π) + I2(π) are ππ=1.8Γ10β3 πβ1sβ1 and ππ = 0.063ββπβ1sβ1. (b) Is the forward reaction endothermic or exothermic if the rate constants for the same reaction have values of ππ = 0.097βπβ1sβ1 and ππ = 2.6 πβ1sβ1 at 800 K?
The following equilibria were measured at 823 K: CoO1s2 + H21g2 ΞCo1s2 + H2O1g2 Kc = 67 H21g2 + CO21g2 ΞCO1g2 + H2O1g2 Kc = 0.14 (a) Use these equilibria to calculate the equilibrium constant, Kc, for the reaction CoO1s2 + CO1g2ΞCo1s2 + CO21g2 at 823 K.
The following equilibria were measured at 823 K: CoO1s2 + H21g2 ΞCo1s2 + H2O1g2 Kc = 67 H21g2 + CO21g2 ΞCO1g2 + H2O1g2 Kc = 0.14 (d) If the reaction vessel from part (c) is heated to 823 K and allowed to come to equilibrium, how much CoO1s2 remains?