A 0.831-g sample of SO3 is placed in a 1.00-L container and heated to 1100 K. The SO3 decomposes to SO2 and O2: 2SO3(π) β 2 SO2(π) + O2(π) At equilibrium, the total pressure in the container is 1.300 atm. Find the values of πΎπ and πΎπ for this reaction at 1100 K.


Verified Solution

Key Concepts
Equilibrium Constant (Kp and Kc)
Decomposition Reaction
Ideal Gas Law
For the equilibrium PH3BCl3(π ) β PH3(π) + BCl3(π) πΎπ = 0.052 at 60 Β°C. (b) After 3.00 g of solid PH3BCl3 is added to a closed 1.500-L vessel at 60 Β°C, the vessel is charged with 0.0500 g of BCl3(π). What is the equilibrium concentration of PH3?
Nitric oxide (NO) reacts readily with chlorine gas as follows: 2 NO(π) + Cl2(π) β 2 NOCl(π) At 700 K, the equilibrium constant Kp for this reaction is 0.26. Predict the behavior of each of the following mixtures at this temperature and indicate whether or not the mixtures are at equilibrium. If not, state whether the mixture will need to produce more products or reactants to reach equilibrium. (b) PNO = 0.12 atm, PCl2 = 0.10 atm, PNOCl = 0.050 atm
At 900 Β°C, πΎπ = 0.0108 for the reaction
CaCO3(π ) β CaO(π ) + CO2(π)
A mixture of CaCO3, CaO, and CO2 is placed in a 10.0-L vessel at 900Β°C. For the following mixtures, will the amount of CaCO3 increase, decrease, or remain the same as the system approaches equilibrium?
(c) 30.5 g CaCO3, 25.5 g CaO, and 6.48 g CO2