Skip to main content
Ch.11 - Liquids and Intermolecular Forces

Chapter 11, Problem 89

A particular liquid crystalline substance has the phase diagram shown in the figure. By analogy with the phase diagram for a nonliquid crystalline substance, identify the phase present in each area.

Verified Solution
Video duration:
58s
This video solution was recommended by our tutors as helpful for the problem above.
563
views
Was this helpful?

Video transcript

Hello everyone today. We have the following problem which label is not correct for the phase diagram of a non liquid crystalline substance. So if we look at each of these, we can examine them 1x1. So one should be a solid, which it is three here should be a liquid crystal and then it's going to be the phases between a a liquid and a solid. So two down here should be a gas and four should be in Esso tropic liquid, so it's liquid all throughout its structure. So the only one of these choices that doesn't align with those values is going to be be pneumatic liquid, which is not a property on this phase diagram. And with that we have answered the question. I hope this helped. And until next time.
Related Practice
Textbook Question

Suppose the vapor pressure of a substance is measured at two different temperatures. (a) By using the Clausius–Clapeyron equation (Equation 11.1) derive the following relationship between the vapor pressures, P1 and P2, and the absolute temperatures at which they were measured, T1 and T2: (b) Gasoline is a mixture of hydrocarbons, a component of which is octane (CH3CH2CH2CH2CH2CH2CH2CH3). Octane has a vapor pressure of 13.95 torr at 25 °C and a vapor pressure of 144.78 torr at 75 °C. Use these data and the equation in part (a) to calculate the heat of vaporization of octane. (c) By using the equation in part (a) and the data given in part (b), calculate the normal boiling point of octane. Compare your answer to the one you obtained from Exercise 11.81. (d) Calculate the vapor pressure of octane at - 30 °C.

718
views
Textbook Question
The following data present the temperatures at which certain vapor pressures are achieved for dichloromethane (CH2Cl2) and methyl iodide (CH3I): (c) The order of volatility of these two substances changes as the temperature is increased. What quantity must be different for the two substances for this phenom- enon to occur?
377
views
Textbook Question

Naphthalene (C10H8) is the main ingredient in traditional mothballs. Its normal melting point is 81 °C, its normal boiling point is 218 °C, and its triple point is 80 °C at 1000 Pa. Using the data, construct a phase diagram for naphthalene, labeling all the regions of your diagram.

2401
views
Textbook Question

In Table 11.3, we saw that the viscosity of a series of hydrocarbons increased with molecular weight, doubling from the six-carbon molecule to the ten-carbon molecule.

(a) The eight-carbon hydrocarbon, octane, has an isomer, isooctane. Would you predict that isooctane would have a larger or smaller viscosity than octane? Why?

529
views
Textbook Question

The vapor pressure of ethanol (C2H5OH) at 19 °C is 40.0 torr. A 1.00-g sample of ethanol is placed in a 2.00 L container at 19 °C. If the container is closed and the ethanol is allowed to reach equilibrium with its vapor, how many grams of liquid ethanol remain?

1362
views
Textbook Question
Liquid butane (C4H10) is stored in cylinders to be used as a fuel. The normal boiling point of butane is listed as -0.5 °C. (b) Suppose the valve to the tank is opened and a few liters of butane are allowed to escape rapidly. What do you expect would happen to the temperature of the remaining liquid butane in the tank? Explain.
1931
views