Skip to main content
Ch.13 - Properties of Solutions
Chapter 13, Problem 104b

Carbon disulfide (CS2) boils at 46.30 °C and has a density of 1.261 g/mL. (b) When 5.39 g of a nondissociating unknown is dissolved in 50.0 mL of CS2, the solution boils at 47.08 °C. What is the molar mass of the unknown?

Recommended similar problem, with video answer:

Verified Solution

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Boiling Point Elevation

Boiling point elevation is a colligative property that describes how the boiling point of a solvent increases when a solute is dissolved in it. This phenomenon occurs because the presence of solute particles disrupts the formation of vapor above the liquid, requiring a higher temperature to reach the boiling point. The change in boiling point can be calculated using the formula ΔT_b = i * K_b * m, where ΔT_b is the boiling point elevation, i is the van 't Hoff factor, K_b is the ebullioscopic constant of the solvent, and m is the molality of the solution.
Recommended video:
Guided course
03:05
Boiling Point Elevation

Molality

Molality (m) is a measure of the concentration of a solute in a solution, defined as the number of moles of solute per kilogram of solvent. It is particularly useful in colligative property calculations because it is independent of temperature and volume changes. To calculate molality, one must first determine the number of moles of the solute and the mass of the solvent in kilograms, which allows for accurate determination of the solution's properties.
Recommended video:

Molar Mass Calculation

Molar mass is the mass of one mole of a substance, typically expressed in grams per mole (g/mol). To find the molar mass of an unknown solute, one can use the relationship between the mass of the solute, the change in boiling point, and the molality of the solution. By rearranging the boiling point elevation formula and substituting known values, one can solve for the molar mass, which is essential for identifying the unknown substance.
Recommended video:
Guided course
03:12
Molar Mass Calculation Example
Related Practice
Open Question
The normal boiling point of ethanol, CH3CH2OH, is 78.4 °C. When 9.15 g of a soluble nonelectrolyte is dissolved in 100.0 g of ethanol at that temperature, the vapor pressure of the solution is 7.40 x 10^2 torr. What is the molar mass of the solute?
Open Question
Calculate the freezing point of a 0.100 m aqueous solution of K2SO4, (a) ignoring interionic attractions, and (b) taking interionic attractions into consideration by using the van’t Hoff factor (Table 13.4).
Textbook Question

Carbon disulfide (CS2) boils at 46.30 °C and has a density of 1.261 g/mL. (a) When 0.250 mol of a nondissociating solute is dissolved in 400.0 mL of CS2, the solution boils at 47.46 °C. What is the molal boiling-point-elevation constant for CS2?

1038
views
1
rank
Open Question
A lithium salt used in lubricating grease has the formula LiC nH2n + 1O2. The salt is soluble in water to the extent of 0.036 g per 100 g of water at 25 °C. The osmotic pressure of this solution is found to be 57.1 torr. Assuming that molality and molarity in such a dilute solution are the same and that the lithium salt is completely dissociated in the solution, determine an appropriate value of n in the formula for the salt.
Textbook Question

Fluorocarbons (compounds that contain both carbon and fluorine) were, until recently, used as refrigerants. The compounds listed in the following table are all gases at 25 °C, and their solubilities in water at 25 °C and 1 atm fluorocarbon pressure are given as mass percentages. (a) For each fluorocarbon, calculate the molality of a saturated solution.

436
views
Textbook Question

Fluorocarbons (compounds that contain both carbon and fluorine) were, until recently, used as refrigerants. The compounds listed in the following table are all gases at 25 °C, and their solubilities in water at 25 °C and 1 atm fluorocarbon pressure are given as mass percentages. (b) Which molecular property best predicts the solubility of these gases in water: molar mass, dipole moment, or ability to hydrogen-bond to water?

Fluorocarbon Solubility (mass %)

CF4 0.0015

CClF3 0.009

CCl2F2 0.028

CHClF2 0.30