Skip to main content
Ch.11 - Liquids, Solids & Intermolecular Forces
Chapter 11, Problem 92

Draw a heating curve (such as the one in Figure 11.36) for 1 mol of benzene beginning at 0 °C and ending at 100 °C. Assume that the values given here are constant over the relevant temperature ranges: Melting point 5.4 °C, Boiling point 80.1 °C, ΔHfus 9.9 kJ/mol, ΔHvap 30.7 kJ/mol, Cs,solid 118 J/mol⋅K, Cs,liquid 135 J/mol⋅K, Cs,gas 104 J/mol⋅K.

Verified step by step guidance
1
Identify the key points on the heating curve: the melting point at 5.4 °C and the boiling point at 80.1 °C.
Calculate the energy required to heat the solid benzene from 0 °C to its melting point using the formula: \( q = m \cdot C_{s,solid} \cdot \Delta T \), where \( m \) is the number of moles, \( C_{s,solid} \) is the specific heat capacity of solid benzene, and \( \Delta T \) is the temperature change.
Calculate the energy required for the phase change from solid to liquid at the melting point using the formula: \( q = m \cdot \Delta H_{fus} \), where \( \Delta H_{fus} \) is the enthalpy of fusion.
Calculate the energy required to heat the liquid benzene from its melting point to its boiling point using the formula: \( q = m \cdot C_{s,liquid} \cdot \Delta T \).
Calculate the energy required for the phase change from liquid to gas at the boiling point using the formula: \( q = m \cdot \Delta H_{vap} \), where \( \Delta H_{vap} \) is the enthalpy of vaporization.
Related Practice
Open Question
Four ice cubes at exactly 0 °C with a total mass of 53.5 g are combined with 115 g of water at 75 °C in an insulated container. If no heat is lost to the surroundings, what is the final temperature of the mixture?
Textbook Question

A sample of steam with a mass of 0.552 g and at a temperature of 100 °C condenses into an insulated container holding 4.25 g of water at 5.0 °C. Assuming that no heat is lost to the surroundings, what is the final temperature of the mixture?

1892
views
Open Question
Draw a heating curve (such as the one in Figure 11.36) for 1 mole of methanol beginning at 170 K and ending at 350 K. Assume that the values given here are constant over the relevant temperature ranges. Melting point: 176 K, Boiling point: 338 K, ΔH_fus: 2.2 kJ/mol, ΔH_vap: 35.2 kJ/mol, C_s,solid: 105 J/mol·K, C_s,liquid: 81.3 J/mol·K, C_s,gas: 48 J/mol·K.
Textbook Question

Air conditioners not only cool air, but dry it as well. A room in a home measures 6.0 m × 10.0 m × 2.2 m. If the outdoor temperature is 30 °C and the partial pressure of water in the air is 85% of the vapor pressure of water at this temperature, what mass of water must be removed from the air each time the volume of air in the room is cycled through the air conditioner? (Assume that all of the water must be removed from the air.) The vapor pressure for water at 30 °C is 31.8 torr.

997
views
3
rank
Textbook Question

A sealed flask contains 0.55 g of water at 28 °C. The vapor pressure of water at this temperature is 28.35 mmHg. What is the minimum volume of the flask in order that no liquid water be present in the flask?

1268
views
Open Question
Based on the phase diagram of CO2 shown in Figure 11.39(b), describe the state changes that occur when the temperature of CO2 is increased from 190 K to 350 K at a constant pressure of (b) 5.1 atm, (c) 10 atm, and (d) 100 atm.