Skip to main content
Ch.9 - Thermochemistry: Chemical Energy

Chapter 9, Problem 95

Hess's law can be used to calculate reaction enthalpies for hypothetical processes that can't be carried out in the labo- ratory. Set up a Hess's law cycle that will let you calculate ∆H° for the conversion of methane to ethylene: 2 CH4(g) → C2H4(g) + 2 H2(g) You can use the following information: 2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(l) ∆H° = -3120.8 kJ CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l) ∆H° = -890.3 kJ C2H4(g) + H2(g) → C2H6(g) ∆H° = -136.3 kJ H2O(l) ∆H°f = -285.8 kJ/mol

Verified Solution
Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
1016
views
Was this helpful?

Video transcript

Hi everyone here we have a question asking us to determine the entropy of the reaction. Using Hess's law. Iron sulfide plus five halves, oxygen forms iron oxide plus two sulfur oxide. Given the following data. So let's go through each of these. So we have iron plus two sulfur forms iron sulfate and its entropy is negative 178.2 kg joules per mole. So we need to reverse that to match our reaction. So that is 178 point to kill jules Permal. And then we have iron plus half oxygen forms iron oxide and its entropy is negative 272.0 kg joules per mole. And we're just going to keep that one the same. So that will be negative, 272 zero kg Permal. And lastly we have sulfur plus oxygen forms sulfur dioxide And it's info p is negative, 296.8 kg joules per mole. And we need to multiply by that by two to match our reaction. So that will be negative .6 kg per mole. So now we have to add this all up to get our entropy. So that's going to equal 178 points to kill jewels per mole plus - zero killed jules Permal plus -593 . Killed Jules, Caramel. And that equals negative .4 Kill Jules Permal. And that is our final answer. Thank you for watching. Bye
Related Practice
Textbook Question
What is Hess's law, and why does it 'work'?
596
views
Textbook Question
The following steps occur in the reaction of ethyl alcohol (CH3CH2OH) wiht oxygen to yield acetic acid (CH3CO2H). Show that equations 1 and 2 sum to give the net equation and calculate ΔH° for the net equation. (1) CH3CH2OH(l) + 1/2 O2(g) → CH3CHO (g) + H2O(l) ΔH° = -174.2 kJ (2) CH3CHO(g) + 1/2 O2(g) → CH3CO2H(l) ΔH° = -318.4 kJ (Net) CH3CH2OH(l) + O2(g) → CH3CO2H(l) + H2O(l) ΔH° = ?
682
views
Textbook Question
The industrial degreasing solvent methylene chloride, CH2Cl2, is prepared from methane by reaction with chlorine: CH4(g) + 2 Cl2(g) → CH2Cl2(g) + 2 HCl(g) Use the following data to calcualte ΔH° in kilojoules for the reaction: CH4(g) + Cl2(g) → CH3Cl(g) + HCl(g) ΔH° = -98.3 kJ CH3Cl(g) + Cl2(g) → CH2Cl2(g) + HCl(g) ΔH° = -104 kJ
709
views
Textbook Question
Find ∆H° in kilojoules for the reaciton of nitric oxide with oxygen, 2 NO(g) + O2(g) → N2O4(g), given the following data: N2O4(g) → 2 NO2(g) ∆H° = 55.3 kJ NO(g) + 1/2 O2(g) → NO2(g) ∆H° = -58.1 kJ
969
views
Textbook Question
Set up a Hess's law cycle, and use the following information to calculate ΔH°f for aqueous nitiric acid, HNO3(aq). You will need to use fractional coefficients for some equations. 3 NO2(g) + H2O(l) → 2 HNO3(aq) + NO(g) ΔH° = -137.3 kJ 2 NO(g) + O2(g) → 2 NO2(g) ΔH° = -116.2 kJ 4 NH3(g) + 5 O2(g) → 4 NO (g) + 6 H2O(l) ΔH° = -1165.2 kJ NH3(g) ΔH°f = -46.1 kJ/mol H2O(l) ΔH°f = -285.8 kJ/mol
1205
views
Textbook Question
What is a compound's standard heat of formation?
552
views