Chapter 3, Problem 8a
Nitrogen monoxide and oxygen react to form nitrogen dioxide. Consider the mixture of NO and O2 shown in the accompanying diagram. The blue spheres represent N, and the red ones represent O. (a) How many molecules of NO2 can be formed, assuming the reaction goes to completion?
Video transcript
The following diagram represents a high-temperature reaction between CH4 and H2O. Based on this reaction, find how many moles of each product can be obtained starting with 4.0 mol CH4.
Based on this reaction, find how many moles of CO can be obtained starting with 4.0 mol CH4?
The following diagram represents a high-temperature reaction between CH4 and H2O. Based on this reaction, find how many moles of each product can be obtained starting with 4.0 mol CH4. Based on this reaction, how many moles of H2 can be obtained starting with 4.0 mol CH4?
Nitrogen 1N22 and hydrogen 1H22 react to form ammonia 1NH32. Consider the mixture of N2 and H2 shown in the accompanying diagram. The blue spheres represent N, and the white ones represent H. (a) Write the balanced chemical equation for the reaction.
Nitrogen monoxide and oxygen react to form nitrogen dioxide. Consider the mixture of NO and O2 shown in the accompanying diagram. The blue spheres represent N, and the red ones represent O. (c) If the actual yield of the reaction was 75% instead of 100%, how many molecules of each kind would be present after the reaction was over?
Write 'true' or 'false' for each statement. (a) We balance chemical equations as we do because energy must be conserved.
Write 'true' or 'false' for each statement. (b) If the reaction 2 O3(g)S 3 O2(g) goes to completion and all O3 is converted to O2, then the mass of O3 at the beginning of the reaction must be the same as the mass of O2 at the end of the reaction.