When ammonium chloride (NH4Cl) is dissolved in water, the solution becomes colder: a. Is the dissolution of ammonium chloride endothermic or exothermic? b. What can you conclude about the relative magnitudes of the lattice energy of ammonium chloride and its heat of hydration? c. Sketch a qualitative energy diagram similar to Figure 13.7 for the dissolution of NH4Cl. d. Why does the solution form? What drives the process?
For each compound, would you expect greater solubility in water or in hexane? Indicate the kinds of intermolecular forces that occur between the solute and the solvent in which the molecule is most soluble. a. glucose
For each compound, would you expect greater solubility in water or in hexane? Indicate the kinds of intermolecular forces that would occur between the solute and the solvent in which the molecule is most soluble. d. ethylene glycol
When lithium iodide (LiI) is dissolved in water, the solution becomes hotter. a. Is the dissolution of lithium iodide endothermic or exothermic?
When lithium iodide (LiI) is dissolved in water, the solution becomes hotter. b. What can you conclude about the relative magnitudes of the lattice energy of lithium iodide and its heat of hydration?
When lithium iodide (LiI) is dissolved in water, the solution becomes hotter. c. Sketch a qualitative energy diagram similar to Figure 13.7 for the dissolution of LiI.