Skip to main content
Ch.10 - Gases
Chapter 10, Problem 12b

The graph below shows the change in pressure as the temperature increases for a 1-mol sample of a gas confined to a 1-L container. The four plots correspond to an ideal gas and three real gases: CO2, N2, and Cl2. (b) Use the van der Waals constants in Table 10.3 to match the labels in the plot (A, B, and C) with the respective gases 1CO2, N2, and Cl22.

Verified Solution

Video duration:
2m
This video solution was recommended by our tutors as helpful for the problem above.
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Ideal Gas Law

The Ideal Gas Law describes the relationship between pressure, volume, temperature, and the number of moles of a gas, expressed as PV = nRT. This law assumes that gas particles do not interact and occupy no volume, making it a useful approximation for many gases under standard conditions. Understanding this law is crucial for analyzing the behavior of gases in the context of temperature and pressure changes.
Recommended video:
Guided course
01:15
Ideal Gas Law Formula

Van der Waals Equation

The Van der Waals equation is an adjustment of the Ideal Gas Law that accounts for the volume occupied by gas molecules and the attractive forces between them. It is expressed as (P + a(n/V)²)(V - nb) = nRT, where 'a' and 'b' are constants specific to each gas. This equation is essential for understanding the behavior of real gases, especially at high pressures and low temperatures, where deviations from ideal behavior occur.
Recommended video:
Guided course
01:40
Van der Waals Equation

Real Gases vs. Ideal Gases

Real gases deviate from ideal behavior due to intermolecular forces and the finite volume of gas particles. Factors such as temperature and pressure can influence these deviations, making it important to use models like the Van der Waals equation for accurate predictions. Recognizing the differences between real and ideal gases helps in interpreting experimental data and understanding the behavior of gases in various conditions.
Recommended video:
Guided course
02:27
Kinetic Energy Formulas
Related Practice
Textbook Question

Consider the following samples of gases:

If the three samples are all at the same temperature, rank them with respect to (c) density

431
views
Textbook Question

A thin glass tube 1 m long is filled with Ar gas at 101.3 kPa, and the ends are stoppered with cotton plugs as shown below. HCl gas is introduced at one end of the tube, and simultaneously NH3 gas is introduced at the other end. When the two gases diffuse through the cotton plugs down the tube and meet, a white ring appears due to the formation of NH4Cl1s2. At which location—a, b, or c—do you expect the ring to form?

685
views
1
rank
Textbook Question

The graph below shows the change in pressure as the temperature increases for a 1-mol sample of a gas confined to a 1-L container. The four plots correspond to an ideal gas and three real gases: CO2, N2, and Cl2. (a) At room temperature, all three real gases have a pressure less than the ideal gas. Which van der Waals constant, a or b, accounts for the influence intermolecular forces have in lowering the pressure of a real gas?

716
views
Textbook Question

Which of the following statements is false? (a) Gases are far less dense than liquids. (b) Gases are far more compressible than liquids. (c) Because liquid water and liquid carbon tetrachloride do not mix, neither do their vapors. (d) The volume occupied by a gas is determined by the volume of its container.

1078
views
1
comments
Textbook Question

(b) Which units are appropriate for expressing atmospheric pressures, N, Pa, atm, kg>m2?

511
views
Textbook Question

(c) Which is most likely to be a gas at room temperature and ordinary atmospheric pressure, F2, Br2, K2O

1182
views