Skip to main content
Ch.20 - Electrochemistry
Chapter 20, Problem 74a

During the discharge of an alkaline battery, 4.50 g of Zn is consumed at the anode of the battery. (a) What mass of MnO2 is reduced at the cathode during this discharge?

Recommended similar problem, with video answer:

Verified Solution

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Redox Reactions

Redox reactions involve the transfer of electrons between two species, where one species is oxidized (loses electrons) and the other is reduced (gains electrons). In the context of the alkaline battery, zinc (Zn) is oxidized at the anode, while manganese dioxide (MnO2) is reduced at the cathode. Understanding the stoichiometry of these reactions is essential for calculating the mass of reactants and products.
Recommended video:
Guided course
03:12
Identifying Redox Reactions

Stoichiometry

Stoichiometry is the calculation of reactants and products in chemical reactions based on the balanced chemical equation. It allows us to determine the relationships between the amounts of substances consumed and produced. In this case, knowing the molar masses of Zn and MnO2 and the balanced equation will enable us to find the mass of MnO2 reduced when a specific mass of Zn is oxidized.
Recommended video:
Guided course
01:16
Stoichiometry Concept

Molar Mass

Molar mass is the mass of one mole of a substance, typically expressed in grams per mole (g/mol). It is crucial for converting between the mass of a substance and the number of moles, which is necessary for stoichiometric calculations. For this problem, the molar masses of Zn and MnO2 will be used to relate the mass of Zn consumed to the mass of MnO2 reduced during the battery's discharge.
Recommended video:
Guided course
02:11
Molar Mass Concept
Related Practice
Textbook Question

A voltaic cell is constructed that is based on the following reaction: Sn2+(aq) + Pb(s) → Sn(s) + Pb2+(aq) (a) If the concentration of Sn2+ in the cathode half-cell is 1.00 M and the cell generates an emf of +0.22 V, what is the concentration of Pb2+ in the anode half-cell?

936
views
Textbook Question

During a period of discharge of a lead–acid battery, 402 g of Pb from the anode is converted into PbSO4(s). (a) What mass of PbO2(s) is reduced at the cathode during this same period?

653
views
Textbook Question

During a period of discharge of a lead–acid battery, 402 g of Pb from the anode is converted into PbSO4(s). (b) How many coulombs of electrical charge are transferred from Pb to PbO2?

Textbook Question

During the discharge of an alkaline battery, 4.50 g of Zn is consumed at the anode of the battery. (b) How many coulombs of electrical charge are transferred from Zn to MnO2?

775
views
Textbook Question

Heart pacemakers are often powered by lithium–silver chromate 'button' batteries. The overall cell reaction is 2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s) (a) Lithium metal is the reactant at one of the electrodes of the battery. Is it the anode or the cathode?

438
views
Textbook Question

Heart pacemakers are often powered by lithium–silver chromate 'button' batteries. The overall cell reaction is 2 Li(s) + Ag2CrO4(s) → Li2CrO4(s) + 2 Ag(s) (b) Choose the two half-reactions from Appendix E that most closely approximate the reactions that occur in the battery. What standard emf would be generated by a voltaic cell based on these half-reactions?

840
views