05:08Ex: Find the Value of a 4x4 Determinant Using Cofactor Expansion (with Zeros)Mathispower4u544views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y=−3x+4y=-3x+4y=−3x+4−2x=7y−9-2x=7y-9−2x=7y−9183views
Multiple ChoiceSolve the system of equations using Cramer's Rule.4x+2y+3z=64x+2y+3z=64x+2y+3z=6x+y+z=3x+y+z=3x+y+z=35x+y+2z=55x+y+2z=55x+y+2z=5147views
Multiple ChoiceWrite each equation in standard form and use Cramer's Rule to solve the system.y−9x=−3y-9x=-3y−9x=−3−3x=4y−1-3x=4y-1−3x=4y−1145views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + y = 7 x - y = 3176views1rank
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13196views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 12x + 3y = 15 2x - 3y = 13196views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 4x - 5y = 17 2x + 3y = 3206views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. x + 2y = 3 3x - 4y = 4257views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.167views
Textbook QuestionFind the cofactor of each element in the second row of each matrix. See Example 2.213views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12213views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 3x - 4y = 4 2x + 2y = 12213views
Textbook QuestionFor Exercises 11–22, use Cramer's Rule to solve each system. 2x = 3y + 2 5x = 51 - 4y212views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 0 0 2 1 - 5 2 5 - 1181views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5190views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 3 1 0 - 3 4 0 - 1 3 - 5190views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 1 1 1 2 2 2 - 3 4 - 5167views
Textbook QuestionIn Exercises 23–30, use expansion by minors to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3182views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3208views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. - 3 4 - 5 5 - 2 0 8 - 1 3208views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 1 5 6 1 4 5 1 9 10190views
Textbook QuestionIn Exercises 31–36, use the alternative method for evaluating third-order determinants on here to evaluate each determinant. 0.5 7 5 0.5 3 9 0.5 1 3174views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8171views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 0 2x - y + z = - 1 - x + 3y - z = - 8171views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. 4x - 5y - 6z = - 1 x - 2y - 5z = - 12 2x - y = 7309views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + y + z = 4 x - 2y + z = 7 x + 3y + 2z = 4236views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13265views
Textbook QuestionIn Exercises 37–44, use Cramer's Rule to solve each system. x + 2z = 10 2y - z = - 5 2x + 3y = 13265views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 2x - 3y + 2z = 4 2x + 3y - 2z = 6 2x - 9y + 6z = 2278views
Textbook QuestionIn Exercises 45–48, explain why the system of equations cannot be solved using Cramer's Rule. Then use Gaussian elimination to solve the system. 4x - 3y - 2z = 12 8x - 6y - 4z = 22216views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1210views
Textbook QuestionEvaluate each determinant in Exercises 49–52. 4 2 8 - 7 - 2 0 4 1 5 0 0 5 4 0 0 - 1210views
Textbook QuestionEvaluate each determinant in Exercises 49–52. - 2 - 3 3 5 1 - 4 0 0 1 2 2 - 3 2 0 1 1192views
Textbook QuestionIn Exercises 53–54, evaluate each determinant. | | 3 1| |7 0| | | |- 2 3| |1 5| | | | | | 3 0| |9 - 6| | | | 0 7| |3 5| |186views
Textbook QuestionIn Exercises 55–56, write the system of linear equations for which Cramer's Rule yields the given determinants. 2 - 4 8 - 4 D = D_x = 3 5 - 10 5445views
Textbook QuestionUse the determinant theorems to evaluate each determinant. See Example 4.157views1rank
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|181views
Textbook QuestionIn Exercises 57–60, solve each equation for x. |1 x - 2| |3 1 1| = - 8 |0 - 2 2|181views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + y = 4 2x - y = 2269views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 4x + 3y = -7 2x + 3y = -11129views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 5x + 4y = 10 3x - 7y = 6149views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 1.5x + 3y = 5 2x + 4y = 3143views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 3x + 2y = 4 6x + 4y = 8134views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. (1/2)x + (1/3)y = 2 (3/2)x - (1/2)y = -12180views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. 2x - y + 4z = -2 3x + 2y - z = -3 x + 4y + 2z = 17188views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. x + 2y + 3z = 4 4x + 3y + 2z = 1 -x - 2y - 3z = 0209views
Textbook QuestionUse Cramer's rule to solve each system of equations. If D = 0, then use another method to determine the solution set. See Examples 5–7. -2x - 2y + 3z = 4 5x + 7y - z = 2 2x + 2y - 3z = -4166views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 0 - 2 1 1 2 0 3 - 1 0 1 1 0 1 1 1 A = B = 0 1 - 1 0 0 1 0 1 1 0 0 - 1 1 2 0 268views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 1 2 3 7/2 - 3 1/2 A = 1 3 4 B = - 1/2 0 1/2 1 4 3 - 1/2 1 - 1/277views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 0 1 0 0 0 1 A = 0 0 1 B = 1 0 0 1 0 0 0 1 0138views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. w - x + 2y = - 3 x - y + z = 4 - w + x - y + 2z = 2 - x + y - 2z = - 4 The inverse of is 78views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. x - y + z = 8 2y - z = - 7 2x + 3y = 1 The inverse of is 82views
Textbook QuestionIn Exercises 37 - 42, a. Write each linear system as a matrix equation in the form AX = B. b. Solve the system using the inverse that is given for the coefficient matrix. 2x + 6y + 6z = 8 2x + 7y + 6z = 10 2x + 7y + 7z = 9 The inverse of is 68views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 2 1 1 2 A = B = 3/2 - 1/2 3 461views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. - 4 0 - 2 4 A = B = 1 3 0 159views
Textbook QuestionIn Exercises 1 - 12, find the products AB and BA to determine whether B is the multiplicative inverse of A. 4 - 3 4 3 A = B = - 5 4 5 447views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 46views
Textbook QuestionIn Exercises 33 - 36, write each matrix equation as a system of linear equations without matrices. 59views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. x + 3y + 4z = - 3 x + 2y + 3z = - 2 x + 4y + 3z = - 6106views
Textbook QuestionIn Exercises 29 - 32, write each linear system as a matrix equation in the form AX = B, where A is the coefficient matrix and B is the constant matrix. 6x + 5y = 13 5x + 4y = 10111views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 10 - 2 A = - 5 146views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 3 - 1 A = - 4 256views
Textbook QuestionIn Exercises 13 - 18, use the fact that if a b d - b A = then A^(-1) = 1/(ad-bc) to find the inverse of c d - c a each matrix, if possible. Check that AA^(-1) = I_2 and A^(-1)A = I_2. 2 3 A = - 1 257views
Textbook QuestionIn Exercises 43–44, (a) Write each linear system as a matrix equation in the form AX = B (b) Solve the system using the inverse that is given for the coefficient matrix.73views
Textbook QuestionIn Exercises 37–38, find the products and to determine whether B is the multiplicative inverse of A.72views
Textbook QuestionAnswer each question. What is the product of [2x2 matrix] and I2 (in either order)?25views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [2x2 matrix] and [2x2 matrix]34views
Textbook QuestionAre the given matrices inverses of each other? (Hint: Check to see whether their products are the identity matrix I↓n.) [3x3 matrix] and [3x3 matrix]26views