Multiple ChoiceUse substitution to solve the following system of linear equations.4x+y=14x+y=14x+y=1x−y=4x-y=4x−y=4256views2rank
Multiple ChoiceUse substitution to solve the following system of linear equations.4x+2y=74x+2y=74x+2y=7x+5y=4x+5y=4x+5y=4227views3comments
Multiple ChoiceUse the elimination method to solve the following system of linear equations.2x+y=12x+y=12x+y=13x−y=43x-y=43x−y=4217views2rank
Multiple ChoiceUse the elimination method to solve the following system of linear equations.10x−4y=510x-4y=510x−4y=55x−4y=15x-4y=15x−4y=1324views3rank
Multiple ChoiceSolve the following system of equations. Classify it as CONSISTENT (INDEPENDENT or DEPENDENT) or INCONSISTENT.y=5x−17y=5x-17y=5x−1715x−3y=5115x-3y=5115x−3y=51203views3rank
Multiple ChoiceSolve the following system of equations. Classify it as CONSISTENT (INDEPENDENT or DEPENDENT) or INCONSISTENT.2x+8y=72x+8y=72x+8y=7x+4y=19x+4y=19x+4y=19203views4rank
Textbook QuestionUse the substitution or elimination method to solve each system of equations. Identify any inconsistent systems or systems with infinitely many solutions. If a system has infinitely many solutions, write the solution set with y arbitrary. 2x + 6y = 6 5x + 9y = 9280views
Textbook QuestionIn Exercises 1–4, determine whether the given ordered pair is a solution of the system. (2, 3) x + 3y = 11 x - 5y = - 13468views
Textbook QuestionIn Exercises 1–5, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets.342views
Textbook QuestionIn Exercises 1–4, determine whether the given ordered pair is a solution of the system. (- 3, 5) 9x + 7y = 8 8x - 9y = - 69282views
Textbook QuestionIn Exercises 1–5, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets.248views
Textbook QuestionIn Exercises 1–5, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets.248views
Textbook QuestionIn Exercises 1–4, determine whether the given ordered pair is a solution of the system. (2, 5) 2x + 3y = 17 x + 4y = 16361views
Textbook QuestionUse the substitution or elimination method to solve each system of equations. Identify any inconsistent systems or systems with infinitely many solutions. If a system has infinitely many solutions, write the solution set with y arbitrary. 1/6x + 1/3y = 8 1/4x + 1/2y = 12370views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. x + y = 4 y = 3x266views
Textbook QuestionA chemist needs to mix a solution that is 34% silver nitrate with one that is 4% silver nitrate to obtain 100 milliliters of a mixture that is 7% silver nitrate. How many milliliters of each of the solutions must be used?460views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. x + 3y = 8 y = 2x - 9232views
Textbook QuestionA chemist needs to mix a solution that is 34% silver nitrate with one that is 4% silver nitrate to obtain 100 milliliters of a mixture that is 7% silver nitrate. How many milliliters of each of the solutions must be used?460views
Textbook QuestionThe perimeter of a table tennis top is 28 feet. The difference between 4 times the length and 3 times the width is 21 feet. Find the dimensions. 198views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. x = 4y - 2 x = 6y + 8313views
Textbook QuestionSolve each problem. Alcohol MixtureBarak wishes to strengthen a mixture that is 10% alcohol to onethat is 30% alcohol. How much pure alcohol should he add to 12 L of the 10% mixture?170views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. 5x + 2y = 0 x - 3y = 0244views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. 5x + 2y = 0 x - 3y = 0244views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. 2x + 5y = - 4 3x - y = 11232views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. 2x - 3y = 8 - 2x 3x + 4y = x + 3y + 14272views
Textbook QuestionSolve each system by substitution. See Example 1. -2x = 6y + 18 -29 = 5y - 3x302views
Textbook QuestionSolve each problem using a system of equations. A company sells recordable CDs for $0.80 each and play-only CDs for $0.60 each. The company receives $76.00 for an order of 100 CDs. However, the customer neglected to specify how many of each type to send. Determine the number of each type of CD that should be sent.176views
Textbook QuestionIn Exercises 5–18, solve each system by the substitution method. y = (1/3)x + 2/3 y = (5/7)x - 2201views
Textbook QuestionSolve each system by elimination. In systems with fractions, first clear denominators. See Example 2. 4x + y = -23 x - 2y = -17156views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. x + y = 1 x - y = 3273views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. 2x + 3y = 6 2x - 3y = 6252views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. 2x + 3y = 6 2x - 3y = 6252views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. x + 2y = 2 - 4x + 3y = 25276views
Textbook QuestionSolve each system by elimination. In systems with fractions, first clear denominators. See Example 2. 5x + 7y = 6 10x - 3y = 46194views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. 4x + 3y = 15 2x - 5y = 1204views
Textbook QuestionSolve each system by elimination. In systems with fractions, first clear denominators. See Example 2. 6x + 7y + 2 = 0 7x - 6y - 26 = 0418views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. 3x - 4y = 11 2x + 3y = - 4242views
Textbook QuestionSolve each system by elimination. In systems with fractions, first clear denominators. See Example 2. x/2+ y/3 = 4 3x/2+3y/2 = 15181views
Textbook QuestionSolve each system by elimination. In systems with fractions, first clear denominators. See Example 2. (2x-1)/3 + (y+2)/4 = 4 (x+3)/2 - (x-y)/2 = 3284views
Textbook QuestionIn Exercises 19–30, solve each system by the addition method. 3x = 4y + 1 3y = 1 - 4x212views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. x = 9-2y x + 2y = 13236views
Textbook QuestionSolve each system of equations. State whether it is an inconsistent system or has infinitely many solutions. If a system has infinitely many solutions, write the solution set with x arbitrary. See Examples 3 and 4. 9x - 5y = 1 -18x + 10y = 1290views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. y = 3x - 5 21x - 35 = 7y221views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. 3x - 2y = − 5 4x + y = 8191views
Textbook QuestionSolve each system of equations. State whether it is an inconsistent system or has infinitely many solutions. If a system has infinitely many solutions, write the solution set with x arbitrary. See Examples 3 and 4. 5x - 5y - 3 = 0 x - y - 12 = 0306views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. x + 3y = 2 3x + 9y = 6200views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. x + 3y = 2 3x + 9y = 6200views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. x/4 - y/4 = −1 x + 4y = -9222views
Textbook QuestionIn Exercises 31–42, solve by the method of your choice. Identify systems with no solution and systems with infinitely many solutions, using set notation to express their solution sets. 2x = 3y + 4 4x = 3 - 5y205views
Textbook QuestionDetermine the system of equations illustrated in each graph. Write equations in standard form. 274views
Textbook QuestionDetermine the system of equations illustrated in each graph. Write equations in standard form. 243views
Textbook QuestionIn Exercises 43–46, let x represent one number and let y represent the other number. Use the given conditions to write a system of equations. Solve the system and find the numbers. The sum of two numbers is 7. If one number is subtracted from the other, their difference is -1. Find the numbers.207views
Textbook QuestionIn Exercises 47–48, solve each system by the method of your choice. (x + 2)/2 - (y + 4)/3 = 3 (x + y)/5 = (x - y)/2 - 5/2276views
Textbook QuestionIn Exercises 47–48, solve each system by the method of your choice. (x - y)/3 = (x + y)/2 - 1/2 (x + 2)/2 - 4 = (y + 4)/3185views
Textbook QuestionIn Exercises 47–48, solve each system by the method of your choice. (x - y)/3 = (x + y)/2 - 1/2 (x + 2)/2 - 4 = (y + 4)/3185views
Textbook QuestionIn Exercises 49–50, solve each system for x and y, expressing either value in terms of a or b, if necessary. Assume that a ≠ 0, b ≠ 0 5ax + 4y = 17 ax + 7y = 22304views
Textbook QuestionSolve each system. (Hint: In Exercises 69–72, let 1/x = t and 1/y = u.) 2/x + 3/y = 18 4/x - 5/y = -8159views
Textbook QuestionUse a system of linear equations to solve Exercises 73–84. How many ounces of a 15% alcohol solution must be mixed with 4 ounces of a 20% alcohol solution to make a 17% alcohol solution?177views
Textbook QuestionFor what value(s) of k will the following system of linear equations have no solution? infinitely many solutions? x - 2y = 3 -2x + 4y = k319views
Textbook QuestionUse a system of linear equations to solve Exercises 73–84. How many ounces of a 50% alcohol solution must be mixed with 80 ounces of a 20% alcohol solution to make a 40% alcohol solution?184views
Textbook QuestionUse a system of equations to solve each problem. See Example 8. Find an equation of the line y = ax + b that passes through the points (-2, 1) and (-1, -2).246views
Textbook QuestionUse a system of equations to solve each problem. See Example 8. Find an equation of the parabola y = ax^2 + bx + c that passes through the points (2, 3), (-1, 0), and (-2, 2).231views
Textbook QuestionExercises 86–88 will help you prepare for the material covered in the first section of the next chapter. a. Does (4, −1) satisfy x + 2y = 2? b. Does (4, -1) satisfy x- 2y= 6?192views
Textbook QuestionExercises 86–88 will help you prepare for the material covered in the first section of the next chapter. a. Does (4, −1) satisfy x + 2y = 2? b. Does (4, -1) satisfy x- 2y= 6?192views
Textbook QuestionSolve each problem. See Examples 5 and 9. The sum of two numbers is 47, and the difference between the numbers is 1. Find the numbers.161views
Textbook QuestionFind the length and width of a rectangle whose perimeter is 40 feet and whose area is 96 square feet.52views
Textbook QuestionFind the length and width of a rectangle whose perimeter is 36 feet and whose area is 77 square feet.47views
Textbook QuestionIn Exercises 43–46, let x represent one number and let y represent the other number. Use the given conditions to write a system of nonlinear equations. Solve the system and find the numbers. The difference between the squares of two numbers is 3. Twice the square of the first number increased by the square of the second number is 9. Find the numbers.49views
Textbook QuestionIn Exercises 43–46, let x represent one number and let y represent the other number. Use the given conditions to write a system of nonlinear equations. Solve the system and find the numbers. The sum of two numbers is 10 and their product is 24. Find the numbers.49views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. x^2+y^2+3y=22, 2x+y=−171views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. y=(x+3)^2, x+2y=−256views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. x^2+(y−2)^2=4, x^2−2y=057views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. x^3+y=0, x^2−y=049views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. x^2+4y^2=20, x+2y=667views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. 2x^2+y^2=18, xy=451views
Textbook QuestionIn Exercises 29–42, solve each system by the method of your choice. 3x^2+4y^2=16, 2x^2−3y^2=548views
Textbook QuestionIn Exercises 19–28, solve each system by the addition method. y^2−x=4, x^2+y^2=468views
Textbook QuestionIn Exercises 19–28, solve each system by the addition method. x^2+y^2=25, (x−8)^2+y^2=4171views
Textbook QuestionIn Exercises 19–28, solve each system by the addition method. 3x^2+4y^2−16=0, 2x^2−3y^2−5=060views
Textbook QuestionIn Exercises 19–28, solve each system by the addition method. x^2−4y^2=−7, 3x^2+y^2=3163views
Textbook QuestionIn Exercises 47–52, solve each system by the method of your choice. 3/x^2+1/y^2=7, 5/x^2−2/y^2=−358views
Textbook QuestionIn Exercises 47–52, solve each system by the method of your choice. −4x+y=12, y=x^3+3x^259views
Textbook QuestionIn Exercises 19–28, solve each system by the addition method. x^2+y^2=13,x^2−y^2=595views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. x+y=1, (x-1)^2+(y+2)^2=10116views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. x+y=1, x^2+xy-y^2=-567views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. xy=3, x^2+y^2=1054views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. y^2=x^2-9, 2y=x-383views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. xy=6, 2x-y=149views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. x^2+y^2=25, x-y=1100views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. y=x^2-4x-10, y=-x^2-2x+1462views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. x+y=2, y=x^2-4x+468views
Textbook QuestionIn Exercises 1–18, solve each system by the substitution method. x+y=2, y=x^2−464views
Textbook QuestionThe perimeter of a rectangle is 26 meters and its area is 40 square meters. Find its dimensions.293views
Textbook QuestionIn Exercises 25–35, solve each system by the method of your choice. This is a piecewise function, refer to textbook problem.60views
Textbook QuestionIn Exercises 25–35, solve each system by the method of your choice. This is a piecewise function, refer to textbook problem.45views
Textbook QuestionIn Exercises 25–35, solve each system by the method of your choice. This is a piecewise function, refer to textbook problem.59views
Textbook QuestionAnswer each of the following. When appropriate, fill in the blank to correctly complete the sentence. The following nonlinear system has two solutions, one of which is (3,____). x + y = 7 x^2 + y^2 = 2526views
Textbook QuestionAnswer each of the following. When appropriate, fill in the blank to correctly complete the sentence. The following nonlinear system has two solutions, one of which is (___, 3). 2x + y = 1 x^2 + y^2 = 1025views
Textbook QuestionAnswer each of the following. When appropriate, fill in the blank to correctly complete the sentence. If we want to solve the following nonlinear system by substitution and we decide to solve equation (2) for y, what will be the resulting equation when the substitution is made into equation (1)? x^2 + y = 2 (1) x - y = 0 (2)27views
Textbook QuestionSolve each problem using a system of equations in two variables. See Example 6. Find two numbers whose sum is 17 and whose product is 42.26views
Textbook QuestionSolve each problem using a system of equations in two variables. See Example 6. Find two numbers whose squares have a sum of 100 and a difference of 28.29views
Textbook QuestionVerify that the points of intersection specified on the graph of each nonlinear system are solutions of the system by substituting directly into both equations. 2x^2 = 3y + 23 y = 2x - 5 23views
Textbook QuestionVerify that the points of intersection specified on the graph of each nonlinear system are solutions of the system by substituting directly into both equations. y = 3x^2 x^2 + y^2 = 10 23views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. x^2 - y = 0 x + y = 229views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. y = x^2 - 2x + 1 x - 3y = -123views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. y = x^2 + 6x + 9 x + 2y = -223views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. y = 6x + x^2 4x - y = -327views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. x^2 + y^2 = 5 -3x + 4y = 230views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. x^2 + y^2 = 10 2x^2 - y^2 = 1741views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. x^2 + y^2 = 0 2x^2 - 3y^2 = 022views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. x^2 + 2y^2 = 9 x^2 + y^2 = 2551views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. 3x^2 + 5y^2 = 17 2x^2 - 3y^2 = 530views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. 5x^2 - 2y^2 = 25 10x^2 + y^2 = 5034views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. 2xy + 1 = 0 x + 16y = 221views
Textbook QuestionSolve each nonlinear system of equations. Give all solutions, including those with nonreal complex components. See Examples 1–5. 3x^2 - y^2 = 11 xy = 1250views
Textbook QuestionSolve each problem using a system of equations in two variables. See Example 6. Find two numbers whose ratio is 9 to 2 and whose product is 162.32views
Textbook QuestionSolve each problem using a system of equations in two variables. See Example 6. Find two numbers whose ratio is 4 to 3 and are such that the sum of their squares is 100.25views
Textbook QuestionSolve each problem using a system of equations in two variables. See Example 6. The longest side of a right triangle is 13 m in length. One of the other sides is 7 m longer than the shortest side. Find the lengths of the two shorter sides of the triangle.23views
Textbook QuestionAnswer each question. Does the straight line 3x - 2y = 9 intersect the circle x^2 + y^2 = 25? (Hint: To find out, solve the system formed by these two equations.)13views
Textbook QuestionAnswer each question. A line passes through the points of intersection of the graphs of y = x^2 and x^2 + y^2 = 90. What is the equation of this line? 33views
Textbook QuestionSolve each problem. Find the radius and height (to the nearest thousandth) of an open-ended cylinder with volume 50 in.^3 and lateral surface area 65 in.^2.24views
Textbook QuestionSolve each problem. The supply and demand equations for a certain commodity are given. supply: p = 2000/(2000 - q) and demand: p = (7000 - 3q)/2q Find the equilibrium demand.33views
Textbook QuestionSolve each problem. The supply and demand equations for a certain commodity are given. supply: p = 2000/(2000 - q) and demand: p = (7000 - 3q)/2q Find the equilibrium price (in dollars).20views
Textbook QuestionSolve each problem. The supply and demand equations for a certain commodity are given. supply: p = √(0.1q + 9) - 2 and demand: p = √(25 - 0.1q) Find the equilibrium demand.33views
Textbook QuestionSolve each problem. The supply and demand equations for a certain commodity are given. supply: p = √(0.1q + 9) - 2 and demand: p = √(25 - 0.1q) Find the equilibrium price (in dollars).37views
Textbook QuestionSolve each problem. Find all values of b such that the straight line 3x - y = b touches the circle x^2 + y^2 = 25 at only one point.10views
Textbook QuestionSolve each problem. Find the equation of the line passing through the points of intersection of the graphs of x^2 + y^2 = 20 and x^2 - y = 0.21views
Textbook QuestionIn Exercises 47–52, solve each system by the method of your choice. 2x^2+xy=6, x^2+2xy=025views