01:52Finding zeros and their multiplicities of a polynomial in factored formlarryschmidt684views1rank1comments
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=4x3+12x−1−2x+1f\left(x\right)=4x^3+\frac12x^{-1}-2x+1f(x)=4x3+21x−1−2x+1233views3rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=2+xf\left(x\right)=2+xf(x)=2+x267views6rank
Multiple ChoiceDetermine if the given function is a polynomial function. If so, write in standard form, then state the degree and leading coefficient. f(x)=3x2+5x+2f\left(x\right)=3x^2+5x+2f(x)=3x2+5x+2370views3rank
Multiple ChoiceDetermine the end behavior of the given polynomial function. f(x)=x2+4x+x+7x3f\left(x\right)=x^2+4x+x+7x^3f(x)=x2+4x+x+7x3428views2rank
Multiple ChoiceMatch the given polynomial function to its graph based on end behavior. f(x)=−2x3+x2+1f\left(x\right)=-2x^3+x^2+1f(x)=−2x3+x2+1524views2rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=2x4−12x3+18x2f\left(x\right)=2x^4-12x^3+18x^2f(x)=2x4−12x3+18x2236views3rank
Multiple ChoiceFind the zeros of the given polynomial function and give the multiplicity of each. State whether the graph crosses or touches the x-axis at each zero. f(x)=x2(x−1)3(2x+6)f\left(x\right)=x^2\left(x-1\right)^3\left(2x+6\right)f(x)=x2(x−1)3(2x+6)385views2rank
Multiple ChoiceDetermine the maximum number of turning points for the given polynomial function. f(x)=6x4+2xf\left(x\right)=6x^4+2xf(x)=6x4+2x340views2rank
Multiple ChoiceBased ONLY on the maximum number of turning points, which of the following graphs could NOT be the graph of the given function? f(x)=x3+1f\left(x\right)=x^3+1f(x)=x3+1225views2rank
Multiple ChoiceThe given term represents the leading term of some polynomial function. Determine the end behavior and the maximum number of turning points. 4x54x^54x5242views1rank
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=5x^2+6x^3477views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. g(x)=7x^5−πx^3+1/5 x234views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. h(x)=7x^3+2x^2+1/x190views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=x^1/2 −3x^2+5222views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/x^3235views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=2x^4195views
Textbook QuestionIn Exercises 1–10, determine which functions are polynomial functions. For those that are, identify the degree. f(x)=(x^2+7)/3416views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = -x^3 + x^2 + 2x330views
Textbook QuestionIn Exercises 10–13, use the Leading Coefficient Test to determine the end behavior of the graph of the given polynomial function. Then use this end behavior to match the polynomial function with its graph. [The graphs are labeled (a) through (d).] f(x) = x^6 -6x^4 + 9x^2482views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 224views
Textbook QuestionIn Exercises 11–14, identify which graphs are not those of polynomial functions. 316views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/3(x+3)^4-3177views
Textbook QuestionGraph the following on the same coordinate system. (a) y = x^2 (b) y = 3x^2 (c) y = 1/3x^2 (d) How does the coefficient of x2 affect the shape of the graph?290views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = x^3 - x^2 - 9x + 9266views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=5x^3+7x^2−x+9260views
Textbook QuestionGraph each function. Determine the largest open intervals of the domain over which each function is (a) increasing or (b) decreasing. See Example 1. ƒ(x)=1/2(x-2)^2+4180views
Textbook QuestionIn Exercises 19–24, (a) Use the Leading Coefficient Test to determine the graph's end behavior. (b) Determine whether the graph has y-axis symmetry, origin symmetry, or neither. (c) Graph the function. f(x) = 4x - x^3347views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=5x^5+2x^3-3x+4417views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-x^3-4x^2+2x-1252views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=11x^4−6x^2+x+3345views
Textbook QuestionIn Exercises 19–24, use the Leading Coefficient Test to determine the end behavior of the graph of the polynomial function. f(x)=−5x^4+7x^2−x+9740views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=-4x^3+3x^2-1201views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=4x^7-x^5+x^3-1274views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = 2x^2(x - 1)^3(x + 2)206views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=9x^6-3x^4+x^2-2270views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=2(x−5)(x+4)^2517views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=3(x+5)(x+2)^2257views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=10x^6-x^5+2x-2387views
Textbook QuestionIn Exercises 25–26, graph each polynomial function. f(x) = -x^3(x + 4)^2(x-1)228views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=3+2x-4x^2-5x^10248views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=−3(x+1/2)(x−4)^3215views
Textbook QuestionUse an end behavior diagram, , , , or , to describe the end behavior of the graph of each polynomial function. See Example 2. ƒ(x)=7+2x-5x^2-10x^4193views
Textbook QuestionIn Exercises 25–32, find the zeros for each polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x)=x^3+7x^2−4x−28474views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-2x(x-3)(x+2)384views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x(x+1)(x-1)219views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−x−1; between 1 and 2242views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3−4x^2+2; between 0 and 1268views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(3x-1)(x+2)^2224views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^4+6x^3−18x^2; between 2 and 3365views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=(4x+3)(x+2)^2224views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = (x + 3)^2192views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=x^3+x^2−2x+1; between -3 and -2211views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+5x^2-x-5284views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^3+x^2-36x-36155views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -(x - 2)^2 - 5278views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-x^3+x^2+2x203views
Textbook QuestionIn Exercises 33–40, use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers. f(x)=3x^3−8x^2+x+2; between 2 and 3238views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=-3x^4-5x^3+2x^2159views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = x^2 - 4x + 3286views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3(x^2-4)(x-1)199views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^3-5x^2-x+6218views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -2x^2 - 8x - 7567views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=2x^4+x^3-6x^2-7x-2180views
Textbook QuestionDetermine the largest open interval of the domain (a) over which the function is increasing and (b) over which it is decreasing. See Example 2. ƒ(x) = -3x^2 + 18x + 1320views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=3x^4-7x^3-6x^2+12x+8218views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points 10x7174views
Textbook QuestionGraph each polynomial function. Factor first if the polynomial is not in factored form. See Examples 3 and 4. ƒ(x)=x^4+3x^3-3x^2-11x-6206views
Textbook QuestionIf the given term is the dominating term of a polynomial function, what can we conclude about each of the following features of the graph of the function? (a)domain (b)range (c)end behavior (d)number of zeros (e)number of turning points -9x6221views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=3x^2-x-4; 1 and 2348views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=-2x^3+5x^2+5x-7; 0 and 1324views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=2x^4-4x^2+4x-8; 1 and 2325views
Textbook QuestionUse the intermediate value theorem to show that each polynomial function has a real zero between the numbers given. See Example 5. ƒ(x)=x^4-4x^3-x+3; 0.5 and 1317views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)187views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)293views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)^2(x-5)^2234views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=(x-2)(x-5)170views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4-x^3+3x^2-8x+8; no real zero greater than 2169views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)(x-5)233views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=2x^5-x^4+2x^3-2x^2+4x-4; no real zero greater than 1184views
Textbook QuestionFor each polynomial function, identify its graph from choices A–F. ƒ(x)=-(x-2)^2(x-5)^2170views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^4+x^3-x^2+3; no real zero less than -2302views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5+2x^3-2x^2+5x+5; no real zero less than -1232views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero greater than 1161views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=3x^4+2x^3-4x^2+x-1; no real zero less than -2233views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero greater than 2158views
Textbook QuestionShow that the real zeros of each polynomial function satisfy the given conditions. See Example 6. ƒ(x)=x^5-3x^3+x+2; no real zero less than -3176views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 256views
Textbook QuestionFind a polynomial function f of least degree having the graph shown. (Hint: See the NOTE following Example 4.) 483views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [-1, 0]351views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=2x^3-5x^2-x+1; [1.4, 2]252views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^3+4x^2-8x-8; [-3.8, -3]618views
Textbook QuestionUse a graphing calculator to find the coordinates of the turning points of the graph of each polynomial function in the given domain interval. Give answers to the nearest hundredth. ƒ(x)=x^4-7x^3+13x^2+6x-28; [-1, 0]607views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Determine when the volume of the box will be greater than 40 in.^3.184views
Textbook QuestionThe following exercises are geometric in nature and lead to polynomial models. Solve each problem. A standard piece of notebook paper measuring 8.5 in. by 11 in. is to be made into a box with an open top by cutting equal-size squares from each cor-ner and folding up the sides. Let x represent the length of a side of each such square in inches. Use the table feature of a graphing calculator to do the following. Round to the nearest hundredth. Find the maximum volume of the box.167views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Factor: x^3+3x^2−x−3216views
Textbook QuestionExercises 107–109 will help you prepare for the material covered in the next section. Determine whether f(x)=x^4−2x^2+1 is even, odd, or neither. Describe the symmetry, if any, for the graph of f.209views