02:59How to Find the Maximum or Minimum Value of a Quadratic Function EasilywikiHow1280views4rank1comments
Multiple ChoiceIdentify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.359views5rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=−(x−5)2+1f\left(x\right)=-\left(x-5\right)^2+1f(x)=−(x−5)2+1361views3rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=3x2+12xf\left(x\right)=3x^2+12xf(x)=3x2+12x617views2rank
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 387views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = - (x + 1)^2 + 4308views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = (x + 4)^2 - 2342views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = -x^2 +2x + 3347views
Textbook QuestionGraph each quadratic function. Give the vertex, axis, x-intercepts, y-intercept, domain, range, and largest open intervals of the domain over which each function is increasing or decreasing. ƒ(x)=-3x^2-12x-1430views
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 443views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The highest point on the graph of a parabola that opens down is the ____ of the parabola.227views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The vertex of the graph of ƒ(x) = x^2 + 2x + 4 has x-coordinate ____ .294views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 279views
Textbook QuestionIn Exercises 5–6, use the function's equation, and not its graph, to find (a) the minimum or maximum value and where it occurs. (b) the function's domain and its range. f(x) = -x^2 + 14x - 106255views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 438views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. Sketch a graph of y=V(x) for January through December. In what month are the fewest volunteers available?200views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. January191views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. October176views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. December175views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. August193views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. May182views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2(x−3)^2+1241views
Textbook QuestionAmong all pairs of numbers whose difference is 14, find a pair whose product is as small as possible. What is the minimum product?687views1comments
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−2(x+1)^2+5353views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 357views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 337views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2x^2−8x+3385views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−x^2−2x+8386views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x - 4)^2 - 3411views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x + 4)^2 - 3264views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−4)^2−1342views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−1)^2+2179views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. y−1=(x−3)^2179views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2(x+2)^2−1251views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=4−(x−1)^2350views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = (x - 5)^2 - 4260views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2−2x−3494views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -1/2 (x + 1)^2 - 3231views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3 (x - 2)^2 +1202views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+3x−10991views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = x^2 + 6x + 5292views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2+3306views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+6x+3277views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3x^2 + 24x - 46504views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x^2+4x−3319views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2−2270views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=3x^2−12x−1243views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=−4x^2+8x−3434views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=5x^2−5x287views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. The vertex is and the parabola opens up.335views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; b^2 - 4ac = 0234views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. Maximum = -6 at x = 10326views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; ^b2 - 4ac < 0392views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (5, 3)318views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) A > 0; b^2 - 4ac > 0985views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (−10, −5)227views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 376views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Maximum = 4 at x = -2328views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 514views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Minimum = 0 at x = 11289views
Textbook QuestionAmong all pairs of numbers whose sum is 16, find a pair whose product is as large as possible. What is the maximum product?608views
Textbook QuestionAmong all pairs of numbers whose difference is 24, find a pair whose product is as small as possible. What is the minimum product?231views
Textbook QuestionHeight of an Object If an object is projected upward from an initial height of 100 ft with an initial velocity of 64 ft per sec, then its height in feet after t seconds is given by s(t) = -16t^2 + 64t + 100. Find the number of seconds it will take the object to reach its maximum height. What is this maximum height?238views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (2, 0) and (5, 0) and y-intercept (0, 5).515views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (1, 0) and (-2, 0) and y-intercept (0, 4).403views
Textbook QuestionThe distance between the two points P(x₁, y₁) and R(x₂, y₂) is d(P, R) = √(x₁ - x₂)^2 + (y₁ -y₂)^2. Distance formula. Find the closest point on the line y = 2x to the point (1, 7). (Hint: Every point on y = 2x has the form (x, 2x), and the closest point has the minimum distance.)225views
Textbook QuestionA quadratic equation ƒ(x) = 0 has a solution x = 2. Its graph has vertex (5, 3). What is the other solution of the equation?228views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-4) The graph passes through the point (1,4).325views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-1) The graph passes through the point (-2,-3).630views