02:59How to Find the Maximum or Minimum Value of a Quadratic Function EasilywikiHow1158views4rank1comments
Multiple ChoiceIdentify the ordered pair of the vertex of the parabola. State whether it is a minimum or maximum.310views5rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=−(x−5)2+1f\left(x\right)=-\left(x-5\right)^2+1f(x)=−(x−5)2+1314views3rank
Multiple ChoiceGraph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=3x2+12xf\left(x\right)=3x^2+12xf(x)=3x2+12x537views2rank
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 343views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = - (x + 1)^2 + 4269views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = (x + 4)^2 - 2317views
Textbook QuestionIn Exercises 1–4, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation for the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x) = -x^2 +2x + 3316views
Textbook QuestionGraph each quadratic function. Give the vertex, axis, x-intercepts, y-intercept, domain, range, and largest open intervals of the domain over which each function is increasing or decreasing. ƒ(x)=-3x^2-12x-1365views
Textbook QuestionIn Exercises 1–4, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 394views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The highest point on the graph of a parabola that opens down is the ____ of the parabola.202views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. The vertex of the graph of ƒ(x) = x^2 + 2x + 4 has x-coordinate ____ .263views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 243views
Textbook QuestionIn Exercises 5–6, use the function's equation, and not its graph, to find (a) the minimum or maximum value and where it occurs. (b) the function's domain and its range. f(x) = -x^2 + 14x - 106236views
Textbook QuestionIn Exercises 5–8, the graph of a quadratic function is given. Write the function's equation, selecting from the following options. 375views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. Sketch a graph of y=V(x) for January through December. In what month are the fewest volunteers available?181views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. January168views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. October159views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. December159views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. August173views
Textbook QuestionSolve each problem. During the course of ayear, the number of volunteers available to run a food bank each month is modeled by V(x), where V(x)=2x^2-32x+150 between the months of January and August. Here x is time in months, with x=1 representing January. From August to December, V(x) is mod-eled by V(x)=31x-226. Find the number of volunteers in each of the following months. May166views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2(x−3)^2+1220views
Textbook QuestionAmong all pairs of numbers whose difference is 14, find a pair whose product is as small as possible. What is the minimum product?650views1comments
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−2(x+1)^2+5321views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 319views
Textbook QuestionConsider the graph of each quadratic function.(a) Give the domain and range. 302views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=2x^2−8x+3337views
Textbook QuestionIn Exercises 9–16, find the coordinates of the vertex for the parabola defined by the given quadratic function. f(x)=−x^2−2x+8349views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x - 4)^2 - 3363views
Textbook QuestionMatch each function with its graph without actually entering it into a calculator. Then, after completing the exercises, check the answers with a calculator. Use the standard viewing window. ƒ(x) = (x + 4)^2 - 3231views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−4)^2−1301views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=(x−1)^2+2162views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. y−1=(x−3)^2165views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2(x+2)^2−1222views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=4−(x−1)^2320views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = (x - 5)^2 - 4233views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2−2x−3451views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -1/2 (x + 1)^2 - 3200views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3 (x - 2)^2 +1183views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+3x−10924views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = x^2 + 6x + 5257views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2+3291views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=x^2+6x+3259views
Textbook QuestionGraph each quadratic function. Give the (a) vertex, (b) axis, (c) domain, and (d) range. See Examples 1–4. ƒ(x) = -3x^2 + 24x - 46446views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x^2+4x−3288views
Textbook QuestionIn Exercises 17–38, use the vertex and intercepts to sketch the graph of each quadratic function. Give the equation of the parabola's axis of symmetry. Use the graph to determine the function's domain and range. f(x)=2x−x^2−2247views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=3x^2−12x−1216views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=−4x^2+8x−3404views
Textbook QuestionIn Exercises 39–44, an equation of a quadratic function is given. a) Determine, without graphing, whether the function has a minimum value or a maximum value. b) Find the minimum or maximum value and determine where it occurs. c) Identify the function's domain and its range. f(x)=5x^2−5x265views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. The vertex is and the parabola opens up.298views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; b^2 - 4ac = 0200views
Textbook QuestionIn Exercises 45–48, give the domain and the range of each quadratic function whose graph is described. Maximum = -6 at x = 10284views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) a < 0; ^b2 - 4ac < 0364views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (5, 3)287views
Textbook QuestionSeveral graphs of the quadratic function ƒ(x) = ax^2 + bx + c are shown below. For the given restrictions on a, b, and c, select the corresponding graph from choices A–F. (Hint: Use the discriminant.) A > 0; b^2 - 4ac > 0732views
Textbook QuestionIn Exercises 49–52, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 2x^2 but with the given point as the vertex. (−10, −5)207views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 335views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Maximum = 4 at x = -2292views
Textbook QuestionConnecting Graphs with Equations Find a quadratic function f having the graph shown. (Hint: See the Note following Example 3.) 459views
Textbook QuestionIn Exercises 53–56, write an equation in vertex form of the parabola that has the same shape as the graph of f(x) = 3x^2 or g(x) = -3x^2, but with the given maximum or minimum. Minimum = 0 at x = 11266views
Textbook QuestionAmong all pairs of numbers whose sum is 16, find a pair whose product is as large as possible. What is the maximum product?570views
Textbook QuestionAmong all pairs of numbers whose difference is 24, find a pair whose product is as small as possible. What is the minimum product?209views
Textbook QuestionHeight of an Object If an object is projected upward from an initial height of 100 ft with an initial velocity of 64 ft per sec, then its height in feet after t seconds is given by s(t) = -16t^2 + 64t + 100. Find the number of seconds it will take the object to reach its maximum height. What is this maximum height?218views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (2, 0) and (5, 0) and y-intercept (0, 5).467views
Textbook QuestionDefine the quadratic function ƒ having x-intercepts (1, 0) and (-2, 0) and y-intercept (0, 4).341views
Textbook QuestionThe distance between the two points P(x₁, y₁) and R(x₂, y₂) is d(P, R) = √(x₁ - x₂)^2 + (y₁ -y₂)^2. Distance formula. Find the closest point on the line y = 2x to the point (1, 7). (Hint: Every point on y = 2x has the form (x, 2x), and the closest point has the minimum distance.)204views
Textbook QuestionA quadratic equation ƒ(x) = 0 has a solution x = 2. Its graph has vertex (5, 3). What is the other solution of the equation?209views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-4) The graph passes through the point (1,4).301views
Textbook QuestionIn Exercises 97–98, write the equation of each parabola in vertex form. Vertex: (-3,-1) The graph passes through the point (-2,-3).573views