Multiple ChoiceWritten below (green dotted curve) is a graph of the function f(x)=x−2f\left(x\right)=\sqrt{x-2}f(x)=x−2. If g(x) (blue solid curve) is a reflection of f(x) about the y-axis what is the equation for g(x)?223views7rank
Multiple ChoiceThe green dotted line in the graph below represents the function f(x)f\left(x\right)f(x). The blue solid line represents the function g(x)g\left(x\right)g(x), which is the function f(x)f\left(x\right)f(x) after it has gone through a shift transformation. Find the equation for g(x)g\left(x\right)g(x).284views3rank
Multiple ChoiceThe green dotted curve below is a graph of the function f(x)f\left(x\right)f(x). Find the domain and range of g(x)g\left(x\right)g(x) (the blue solid curve), which is a transformation of f(x)f\left(x\right)f(x).398views3rank
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = f(x)+1222views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = f(x+1)454views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = f(-x)193views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = -f(x) +3201views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = f(-x)+3303views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = 2f(x)240views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = f(x/2)198views
Textbook QuestionIn Exercises 1-16, use the graph of y = f(x) to graph each function g. g(x) = -f(2x) - 1225views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = f(x) - 1202views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = f(x-1)206views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = f(x-1)+2277views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = f(x + 1) − 2169views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = f(-x)206views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = f(-x)+1241views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = -f(x)+1179views
Textbook QuestionIn Exercises 17-32, use the graph of y = f(x) to graph each function g. g(x) = ½ f(x)182views
Textbook QuestionIn Exercises 33-44, use the graph of y = f(x) to graph each function g. g(x) = f(x)+2232views
Textbook QuestionIn Exercises 33-44, use the graph of y = f(x) to graph each function g. g(x) = f(x+2)179views
Textbook QuestionPlot each point, and then plot the points that are symmetric to the given point with respect to the (a) x-axis, (b) y-axis, and (c) origin. (5, -3)229views
Textbook QuestionIn Exercises 33-44, use the graph of y = f(x) to graph each function g. g(x) = -(1/2)f(x+2)185views
Textbook QuestionPlot each point, and then plot the points that are symmetric to the given point with respect to the (a) x-axis, (b) y-axis, and (c) origin. (-4, -2)173views
Textbook QuestionIn Exercises 33-44, use the graph of y = f(x) to graph each function g. g(x) = -½ ƒ ( x + 2) —2190views
Textbook QuestionIn Exercises 33-44, use the graph of y = f(x) to graph each function g. g(x) = (1/2)f(2x)210views
Textbook QuestionWithout graphing, determine whether each equation has a graph that is symmetric with respect to the x-axis, the y-axis, the origin, or none of these. See Examples 3 and 4. y=x^2+5871views
Textbook QuestionIn Exercises 45-52, use the graph of y = f(x) to graph each function g. g(x) = -f(x-1) + 1228views
Textbook QuestionWithout graphing, determine whether each equation has a graph that is symmetric with respect to the x-axis, the y-axis, the origin, or none of these. See Examples 3 and 4. x^2+y^2=12342views
Textbook QuestionIn Exercises 45-52, use the graph of y = f(x) to graph each function g. g(x) = -f(x + 1) − 1204views
Textbook QuestionIn Exercises 45-52, use the graph of y = f(x) to graph each function g. g(x)=2f(x-1)263views
Textbook QuestionIn Exercises 53-66, begin by graphing the standard quadratic function, f(x) = x². Then use transformations of this graph to graph the given function. g(x) = x² - 2272views
Textbook QuestionIn Exercises 53-66, begin by graphing the standard quadratic function, f(x) = x². Then use transformations of this graph to graph the given function. g(x) = (x − 2)²214views
Textbook QuestionIn Exercises 55–59, use the graph of to graph each function g. g(x) = f(x + 2) + 3198views
Textbook QuestionIn Exercises 55–59, use the graph of to graph each function g. g(x) = -f(2x)218views
Textbook QuestionIn Exercises 60–63, begin by graphing the standard quadratic function, f(x) = x^2. Then use transformations of this graph to graph the given function. g(x) = x^2 + 2215views
Textbook QuestionIn Exercises 60–63, begin by graphing the standard quadratic function, f(x) = x^2. Then use transformations of this graph to graph the given function. r(x) = -(x + 1)^2215views
Textbook QuestionIn Exercises 53-66, begin by graphing the standard quadratic function, f(x) = x². Then use transformations of this graph to graph the given function. g(x) = (1/2)(x − 1)²215views
Textbook QuestionIn Exercises 64–66, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. g(x) = √(x + 3)181views
Textbook QuestionIn Exercises 53-66, begin by graphing the standard quadratic function, f(x) = x². Then use transformations of this graph to graph the given function. h(x) = (1/2) (x − 1)² – 1350views
Textbook QuestionIn Exercises 64–66, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. r(x) = 2√(x + 2)575views
Textbook QuestionIn Exercises 53-66, begin by graphing the standard quadratic function, f(x) = x². Then use transformations of this graph to graph the given function. h(x) = -2(x+2)²+1176views
Textbook QuestionGraph each function. See Examples 6–8 and the Summary of Graphing Techniques box following Example 9. ƒ(x)=x^2+2158views
Textbook QuestionIn Exercises 67-80, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. g(x) = √x + 1195views
Textbook QuestionIn Exercises 67-80, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. g(x) = √(x+1)190views
Textbook QuestionIn Exercises 67-80, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. h(x)=-√(x + 1)219views
Textbook QuestionConsider the following nonlinear system. Work Exercises 75 –80 in order. y = | x - 1 | y = x^2 - 4 How is the graph of y = | x - 1 | obtained by transforming the graph of y = | x |?167views
Textbook QuestionGraph each function. See Examples 6–8 and the Summary of Graphing Techniques box following Example 9. h(x)=-(x+1)^3154views
Textbook QuestionIn Exercises 67-80, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. h(x) = √(x+1)-1198views
Textbook QuestionIn Exercises 67-80, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. g(x) = 2√(x+1)-1186views
Textbook QuestionGraph each function. See Examples 6–8 and the Summary of Graphing Techniques box following Example 9. ƒ(x)=-3(x-2)^2+1162views
Textbook QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. g(x) = |x|+3203views
Textbook QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. g(x) = |x+3|211views
Textbook QuestionGraph each function. See Examples 6–8 and the Summary of Graphing Techniques box following Example 9. ƒ(x)=2√x+1185views
Textbook QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. h(x) = |x + 3| - 2200views
Textbook QuestionGraph each function. See Examples 6–8 and the Summary of Graphing Techniques box following Example 9. ƒ(x)=3√x-2190views
Textbook QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. h(x) = 2|x+3|197views
Textbook QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. g(x) = -2|x+3|+2162views
Textbook QuestionEach of the following graphs is obtained from the graph of ƒ(x)=|x| or g(x)=√x by applying several of the transformations discussed in this section. Describe the transformations and give an equation for the graph. 178views
Textbook QuestionIn Exercises 95-106, begin by graphing the standard cubic function, f(x) = x³. Then use transformations of this graph to graph the given function. g(x) = x³-3187views
Textbook QuestionDescribe how the graph of each function can be obtained from the graph of ƒ(x) = |x|. g(x) = -|x|590views
Textbook QuestionIn Exercises 95-106, begin by graphing the standard cubic function, f(x) = x³. Then use transformations of this graph to graph the given function. g(x) = (x − 3)^3224views
Textbook QuestionLet ƒ(x) = 3x -4. Find an equation for each reflection of the graph of ƒ(x). across the x-axis278views
Textbook QuestionIn Exercises 95-106, begin by graphing the standard cubic function, f(x) = x³. Then use transformations of this graph to graph the given function. h(x) = -x³189views
Textbook QuestionLet ƒ(x) = 3x -4. Find an equation for each reflection of the graph of ƒ(x). across the y-axis173views
Textbook QuestionEach of the following graphs is obtained from the graph of ƒ(x)=|x| or g(x)=√x by applying several of the transformations discussed in this section. Describe the transformations and give an equation for the graph. 204views
Textbook QuestionThe graph of a function ƒ is shown in the figure. Sketch the graph of each function defined as follows. (a) y = ƒ(x) +3172views
Textbook QuestionThe graph of a function ƒ is shown in the figure. Sketch the graph of each function defined as follows. (b) y = ƒ(x-2)202views
Textbook QuestionThe graph of a function ƒ is shown in the figure. Sketch the graph of each function defined as follows. (c) y = ƒ(x+3) - 2320views
Textbook QuestionIn Exercises 95-106, begin by graphing the standard cubic function, f(x) = x³. Then use transformations of this graph to graph the given function. r(x) = (x − 2)³ +1189views
Textbook QuestionThe graph of a function ƒ is shown in the figure. Sketch the graph of each function defined as follows. (d) y = |ƒ(x)|291views
Textbook QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. g(x) = ∛x+2365views
Textbook QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. g(x) = ∛(x-2)632views
Textbook QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. g(x) = (1/2)∛(x-2)195views
Textbook QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. g(x) = (1/2)∛(x+2) - 2255views
Textbook QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. ∛(-x-2)297views
Textbook QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. g(x) = -|x + 4| +2325views