Multiple ChoiceWrite the log expression as a single log.log219x+2log23x\log_2\frac{1}{9x}+2\log_23xlog29x1+2log23x192views
Multiple ChoiceWrite the log expression as a single log.ln3xy+2ln2y−ln4x\ln\frac{3x}{y}+2\ln2y-\ln4xlny3x+2ln2y−ln4x164views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log3(x9y2)\log_3\left(\frac{\sqrt{x}}{9y^2}\right)log3(9y2x)184views
Multiple ChoiceWrite the single logarithm as a sum or difference of logs.log5(5(2x+3)2x3)\log_5\left(\frac{5\left(2x+3\right)^2}{x^3}\right)log5(x35(2x+3)2)181views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log317\log_317log317158views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the common log.log967\log_967log967198views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log.log841\log_841log841149views
Multiple ChoiceEvaluate the given logarithm using the change of base formula and a calculator. Use the natural log. log23789\log_23789log23789161views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 (7 × 3)327views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7x)306views
Textbook QuestionIn Exercises 1–8, write each equation in its equivalent exponential form. 5= logb 32213views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)277views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(1000x)277views
Textbook QuestionAnswer each of the following. Write log_3 12 in terms of natural logarithms using the change-of-base theorem.200views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log7 (7/x)312views
Textbook QuestionAnswer each of the following. Between what two consecutive integers must log_2 12 lie?318views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log(x/100)411views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 10^12194views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)283views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (64/y)283views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln(e^2/5)385views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.1149views
Textbook QuestionIn Exercises 13–15, write each equation in its equivalent exponential form. log3 81 = y254views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb x^3262views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. . log 63175views
Textbook QuestionIf the statement is in exponential form, write it in an equivalent logarithmic form. If the statement is in logarithmic form, write it in exponential form. log↓√3 81 = 8260views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 0.0022175views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)275views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log N^(-6)275views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln 5√x (fifth root of)275views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log(387 * 23)185views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb (x^2 y)267views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518/342183views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 387 + log 23161views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)225views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)225views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log3 27232views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log6 (36/(√(x+1))282views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 1. log 518 - log 342176views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((x^2 y)/z^2)479views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). grapefruit, 6.3*10^-4242views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)602views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log √(100x)602views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). limes, 1.6*10^-2203views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. ln 144,000227views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log ∛(x/y)249views
Textbook QuestionFor each substance, find the pH from the given hydronium ion concentration to the nearest tenth. See Example 2(a). crackers, 3.9*10^-9190views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. logb ((√x y^3)/z^3)235views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). soda pop, 2.7173views
Textbook QuestionUse a calculator to find an approximation to four decimal places for each logarithm. log₂/₃ 5/8211views
Textbook QuestionIn Exercises 21–42, evaluate each expression without using a calculator. log5 5240views
Textbook QuestionFind the [H_3O^+] for each substance with the given pH. Write answers in scientific notation to the nearest tenth. See Example 2(b). beer, 4.8170views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)301views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log5 ∛((x^2 y)/24)301views
Textbook QuestionIn Exercises 36–38, begin by graphing f(x) = log2 x Then use transformations of this graph to graph the given function. What is the graph's x-intercept? What is the vertical asymptote? Use the graphs to determine each function's domain and range. g(x) = log2 (x-2)268views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln[(x^3(√(x^2 + 1))/(x + 1)^4]286views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-5180views
Textbook QuestionIn Exercises 1–40, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log [(10x^2∛(1 - x))/(7(x + 1)^2)]236views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-2203views
Textbook QuestionSuppose that water from a wetland area is sampled and found to have the given hydronium ion concentration. Determine whether the wetland is a rich fen, a poor fen, or a bog. See Example 3. 2.49*10^-7197views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2325views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2325views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 398.4174views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. ln x + ln 7220views
Textbook QuestionSolve each problem. Use a calculator to find an approximation for each logarithm. log 3.984187views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log2 (96) - log2 (3)343views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln e^1.6162views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 1/e^2189views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y216views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + 3 log y216views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln √e193views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. log4 (√x/64)491views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)ln x + ln y184views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 28181views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 2 logb x + 3 logb y293views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 0.00013153views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)376views
Textbook QuestionIn Exercises 50–53, use properties of logarithms to expand each logarithmic expression as much as possible. Where possible, evaluate logarithmic expressions without using a calculator. ln ∛(x/e)376views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. log 3 - 3 log x417views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y314views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 5 ln x - 2 ln y314views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln (27 * 943)155views
Textbook QuestionIn Exercises 54–57, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. 1/2 ln x - ln y689views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x - (1/3) ln y260views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98/13184views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 4 ln (x + 6) - 3 ln x304views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 27 + ln 943194views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863365views
Textbook QuestionIn Exercises 58–59, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log4 0.863365views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z350views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. 3 ln x + 5 ln y - 6 ln z350views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 98 - ln 13157views
Textbook QuestionFind each value. If applicable, give an approximation to four decimal places. See Example 5. ln 84 - ln 17186views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log x + log y)207views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/2)(log5 x + log5 y) - 2 log5 (x + 1)300views
Textbook QuestionThe figure shows the graph of f(x) = ln x. In Exercises 65–74, use transformations of this graph to graph each function. Graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. h(x) = ln (2x)345views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]272views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. (1/3) [2 ln(x + 5) - ln x - ln (x^2 - 4)]272views
Textbook QuestionIn Exercises 41–70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log x + log(x^2 - 1) - log 7 - log(x + 1)286views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log5 13886views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5200views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log14 87.5200views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. log0.1 17229views
Textbook QuestionIn Exercises 71–78, use common logarithms or natural logarithms and a calculator to evaluate to four decimal places. logπ 63205views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_2 5150views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log3 x166views
Textbook QuestionIn Exercises 79–82, use a graphing utility and the change-of-base property to graph each function. y = log2 (x + 2)160views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_8 0.59173views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. log 10^7214views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. . log_1/2 3194views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb (3/2)236views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_π e155views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb 8280views
Textbook QuestionIn Exercises 83–88, let logb 2 = A and logb 3 = C and Write each expression in terms of A and C. logb √(2/27)215views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√13 12172views
Textbook QuestionUse the change-of-base theorem to find an approximation to four decimal places for each logarithm. See Example 8. log_√19 5218views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln (b^4√a)209views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)192views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log4 (2x^3) = 3 log4 (2x)192views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(8x^3) = 3 ln (2x)199views
Textbook QuestionGiven that log↓10 2 ≈ 0.3010 and log↓10 3 ≈ 0.4771, find each logarithm without using a calculator. log↓10 6179views
Textbook QuestionIn Exercises 81–100, evaluate or simplify each expression without using a calculator. e^ln 125236views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. x log 10^x = x^2232views
Textbook QuestionLet u = ln a and v = ln b. Write each expression in terms of u and v without using the ln function. ln √(a^3/b^5)194views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1211views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(x + 1) = ln x + ln 1211views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 1/e)263views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln(5x) + ln 1 = ln(5x)199views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln ln 5^2)182views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given g(x) = e^x, find g(ln 4)233views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. ln x + ln(2x) = ln(3x)196views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (2 ln 3))203views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 (ln 3))193views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = 3^x, find ƒ(log_3 2)217views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]237views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log(x + 3) - log(2x) = [log(x + 3)/log(2x)]237views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(2 log_2 2))175views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. [log(x + 2)/log(x - 1)] = log(x + 2) - log(x - 1)202views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^(log_2 2))188views
Textbook QuestionUse the various properties of exponential and logarithmic functions to evaluate the expressions in parts (a)–(c). Given ƒ(x) = log_2 x, find ƒ(2^7)182views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [(x - 1)/(x^2 + 4)] = log6 (x - 1) - log6 (x^2 + 4)252views
Textbook QuestionWork each problem. Which of the following is equivalent to 2 ln(3x) for x > 0? A. ln 9 + ln x B. ln 6x C. ln 6 + ln x D. ln 9x^2191views
Textbook QuestionWork each problem. Which of the following is equivalent to ln(4x) - ln(2x) for x > 0? A. 2 ln x B. ln 2x C. (ln 4x)/(ln 2x) D. ln 2183views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)192views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log6 [4(x + 1)] = log6 (4) + log6 (x + 1)192views
Textbook QuestionIn Exercises 89–102, determine whether each equation is true or false. Where possible, show work to support your conclusion. If the statement is false, make the necessary change(s) to produce a true statement. log3 (7) = 1/[log7 (3)]182views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓2 [4 (x-3) ]302views
Textbook QuestionUse properties of logarithms to rewrite each function, then graph. ƒ(x) = log↓3 [9 (x+2) ]181views
Textbook QuestionIn Exercises 101–104, write each equation in its equivalent exponential form. Then solve for x. log4 x=-3232views
Textbook QuestionIn Exercises 109–112, find the domain of each logarithmic function. f(x) = log[(x+1)/(x-5)]231views1rank
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. log7 49 / log7 7 = log7 49 - log7 7220views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y223views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (x^3 + y^3) = 3 logb x + 3 logb y223views
Textbook QuestionIn Exercises 125–128, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. logb (xy)^5 = (logb x + logb y)^5212views