Guided course 1:08Transformation of an Exponential Function / Example 14.4Pearson428views1rank1comments
Multiple ChoiceDetermine if the function is an exponential function. If so, identify the power & base, then evaluate for x=4x=4x=4.f(x)=(−2)xf\left(x\right)=\left(-2\right)^{x}f(x)=(−2)x331views3rank
Multiple ChoiceDetermine if the function is an exponential function. If so, identify the power & base, then evaluate for x=4x=4x=4 .f(x)=3(1.5)xf\left(x\right)=3\left(1.5\right)^{x}f(x)=3(1.5)x242views3rank
Multiple ChoiceDetermine if the function is an exponential function. If so, identify the power & base, then evaluate for x=4x=4x=4 .f(x)=(12)xf\left(x\right)=\left(\frac12\right)^{x}f(x)=(21)x243views5rank
Textbook QuestionIn Exercises 1–10, approximate each number using a calculator. Round your answer to three decimal places. 2^3.4275views
Textbook QuestionFill in the blank(s) to correctly complete each sentence. If ƒ(x) = 4^x, then ƒ(2) = and ƒ(-2) = ________.226views
Textbook QuestionIn Exercises 1–4, the graph of an exponential function is given. Select the function for each graph from the following options: f(x) = 4^x, g(x) = 4^-x, h(x) = -4^(-x), r(x) = -4^(-x)+3 3. 398views
Textbook QuestionIn Exercises 1–10, approximate each number using a calculator. Round your answer to three decimal places. 4^-1.5246views
Textbook QuestionIn Exercises 1–10, approximate each number using a calculator. Round your answer to three decimal places. e^2.3390views
Textbook QuestionIn Exercises 5–9, graph f and g in the same rectangular coordinate system. Use transformations of the graph of f to obtain the graph of g. Graph and give equations of all asymptotes. Use the graphs to determine each function's domain and range. f(x) = 3^x and g(x) = -3^x413views
Textbook QuestionSolve each equation. Round answers to the nearest hundredth as needed. x^(2/3) =36214views
Textbook QuestionUse the compound interest formulas to solve Exercises 10–11. Suppose that you have $5000 to invest. Which investment yields the greater return over 5 years: 1.5% compounded semiannually or 1.45% compounded monthly?526views
Textbook QuestionIn Exercises 11–18, graph each function by making a table of coordinates. If applicable, use a graphing utility to confirm your hand-drawn graph. f(x) = 4^x471views
Textbook QuestionIn Exercises 11–18, graph each function by making a table of coordinates. If applicable, use a graphing utility to confirm your hand-drawn graph. g(x) = (3/2)^x325views
Textbook QuestionFor ƒ(x) = 3^x and g(x)= (1/4)^x find each of the following. Round answers to the nearest thousandth as needed. See Example 1. g(2)207views
Textbook QuestionIn Exercises 11–18, graph each function by making a table of coordinates. If applicable, use a graphing utility to confirm your hand-drawn graph. f(x) = (0.6)^x272views
Textbook QuestionIn Exercises 19–24, the graph of an exponential function is given. Select the function for each graph from the following options: f(x) = 3^x, g(x) = 3^(x-1), h(x) = 3^x - 1 ; f(x) = -3^x, G(x) = 3^(-x), H(x) = -3^(-x) 899views
Textbook QuestionFor ƒ(x) = 3^x and g(x)= (1/4)^x find each of the following. Round answers to the nearest thousandth as needed. See Example 1. g(3/2)223views
Textbook QuestionIn Exercises 19–24, the graph of an exponential function is given. Select the function for each graph from the following options: f(x) = 3^x, g(x) = 3^(x-1), h(x) = 3^x - 1 ; f(x) = -3^x, G(x) = 3^(-x), H(x) = -3^(-x) 671views
Textbook QuestionIn Exercises 25-34, begin by graphing f(x) = 2^x. Then use transformations of this graph to graph the given function. Be sure to graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn graphs. g(x) = 2^(x+1)927views
Textbook QuestionFor ƒ(x) = 3^x and g(x)= (1/4)^x find each of the following. Round answers to the nearest thousandth as needed. See Example 1. g(-1.68)253views
Textbook QuestionIn Exercises 25-34, begin by graphing f(x) = 2^x. Then use transformations of this graph to graph the given function. Be sure to graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn graphs. h(x) = 2^(x+1) – 1255views
Textbook QuestionIn Exercises 25-34, begin by graphing f(x) = 2^x. Then use transformations of this graph to graph the given function. Be sure to graph and give equations of the asymptotes. Use the graphs to determine each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn graphs. g(x) = −2^x286views
Textbook QuestionThe figure shows the graph of f(x) = e^x. In Exercises 35-46, use transformations of this graph to graph each function. Be sure to give equations of the asymptotes. Use the graphs to determine graphs. each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn g(x) = e^x+2294views
Textbook QuestionThe figure shows the graph of f(x) = e^x. In Exercises 35-46, use transformations of this graph to graph each function. Be sure to give equations of the asymptotes. Use the graphs to determine graphs. each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn h(x) = e^(x-1)+2233views
Textbook QuestionThe figure shows the graph of f(x) = e^x. In Exercises 35-46, use transformations of this graph to graph each function. Be sure to give equations of the asymptotes. Use the graphs to determine graphs. each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn g(x) = 2e^x265views
Textbook QuestionThe figure shows the graph of f(x) = e^x. In Exercises 35-46, use transformations of this graph to graph each function. Be sure to give equations of the asymptotes. Use the graphs to determine graphs. each function's domain and range. If applicable, use a graphing utility to confirm your hand-drawn h(x) = e^2x + 1279views
Textbook QuestionIn Exercises 47–52, graph functions f and g in the same rectangular coordinate system. Graph and give equations of all asymptotes. If applicable, use a graphing utility to confirm your hand-drawn graphs. f(x) = 3^x and g(x) = (1/3). 3^x380views
Textbook QuestionGraph each function. Give the domain and range. See Example 3. ƒ(x) = 2^(x+2) - 4344views
Textbook QuestionIn Exercises 47–52, graph functions f and g in the same rectangular coordinate system. Graph and give equations of all asymptotes. If applicable, use a graphing utility to confirm your hand-drawn graphs. f(x) = (½)^x and g(x) = (1/2)^(x-1) + 1224views
Textbook QuestionUse the compound interest formulas A = P (1+ r/n)^nt and A =Pe^rt to solve exercises 53-56. Round answers to the nearest cent. Find the accumulated value of an investment of $10,000 for 5 years at an interest rate of 1.32% if the money is a. compounded semiannually; b. compounded quarterly; c. compounded monthly; d. compounded continuously.360views
Textbook QuestionUse the compound interest formulas A = P (1+ r/n)^nt and A =Pe^rt to solve exercises 53-56. Round answers to the nearest cent. Find the accumulated value of an investment of $10,000 for 5 years at an interest rate of 1.32% if the money is a. compounded semiannually; b. compounded quarterly; c. compounded monthly; d. compounded continuously.1353views
Textbook QuestionUse the compound interest formulas A = P (1+ r/n)^nt and A =Pe^rt to solve exercises 53-56. Round answers to the nearest cent. Find the accumulated value of an investment of $10,000 for 5 years at an interest rate of 1.32% if the money is a. compounded semiannually; b. compounded quarterly; c. compounded monthly; d. compounded continuously.403views
Textbook QuestionUse the compound interest formulas A = P (1+ r/n)^nt and A =Pe^rt to solve exercises 53-56. Round answers to the nearest cent. Suppose that you have $12,000 to invest. Which investment yields the greater return over 3 years: 0.96% compounded monthly or 0.95% compounded continuously?233views
Textbook QuestionGraph each function. Give the domain and range. See Example 3. ƒ(x) = (1/3)^(-x+1)255views
Textbook QuestionGraph each function. Give the domain and range. See Example 3. ƒ(x) = -(1/3)^(x+2) - 1222views
Textbook QuestionGraph f(x) = 2^x and its inverse function in the same rectangular coordinate system.733views
Textbook QuestionConcept Check. If ƒ(x) = a^x and ƒ(3) = 27, determine each function value. ƒ(-1)207views