03:53Determine if an Equation is a Hyperbola, Ellipse, Parabola or CircleMario's Math Tutoring525views
Multiple ChoiceGraph the parabola −4(y+1)=(x+1)2-4\left(y+1\right)=\left(x+1\right)^2−4(y+1)=(x+1)2, and find the focus point and directrix line.239views
Multiple ChoiceIf a parabola has the focus at (0,−1)\left(0,-1\right)(0,−1) and a directrix line y=1y=1y=1, find the standard equation for the parabola.221views
Multiple ChoiceGraph the parabola 8(x+1)=(y−2)28\left(x+1\right)=\left(y-2\right)^28(x+1)=(y−2)2 , and find the focus point and directrix line.212views
Multiple ChoiceIf a parabola has the focus at (2,4)\left(2,4\right)(2,4) and a directrix line x=−4x=-4x=−4 , find the standard equation for the parabola.158views1rank
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. x^2 - 4x - 2y = 0425views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (12,0); Directrix: x=-12553views
Textbook QuestionIdentify the conic represented by the equation without completing the square. 4x^2 - 9y^2 - 8x + 12y - 144 = 0733views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)528views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01478views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x713views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)528views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01478views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x713views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)528views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11858views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 8x523views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x713views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11858views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = 4x249views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = 4y261views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = - 4y362views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x230views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x230views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 16x164views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = - 8x177views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = 12y234views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = - 16y197views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0291views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0291views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. 8x^2 + 4y = 0265views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (7, 0); Directrix: x = - 7538views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 5, 0); Directrix: x = 5248views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15231views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15231views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25217views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25217views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)276views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)276views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)276views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (3, 2); Directrix: x = - 1294views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 3, 4); Directrix: y = 2192views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = 4(x - 1)266views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (x + 1)^2 = - 4(y + 1)224views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = - 4(x - 1)228views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)262views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)262views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x + 1)^2 = - 8(y + 1)175views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 3)^2 = 12(x + 1)176views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 1)^2 = - 8x206views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 - 2x - 4y + 9 =0216views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. y^2 - 2y + 12x - 35 = 0288views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 + 6x - 4y + 1 = 0178views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. y^2 - 4x + 2y + 21 = 0271views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0334views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0334views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3213views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3213views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3213views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? x = - 4(y - 1)^2 + 3235views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. (y - 2)^2 = x + 4 y = - (1/2)x162views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = y^2 - 3 x = y^2 - 3y193views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = (y + 2)^2 - 1 (x - 2)^2 + (y + 2)^2 = 1308views