03:53Determine if an Equation is a Hyperbola, Ellipse, Parabola or CircleMario's Math Tutoring459views
Multiple ChoiceGraph the parabola −4(y+1)=(x+1)2-4\left(y+1\right)=\left(x+1\right)^2−4(y+1)=(x+1)2, and find the focus point and directrix line.218views
Multiple ChoiceIf a parabola has the focus at (0,−1)\left(0,-1\right)(0,−1) and a directrix line y=1y=1y=1, find the standard equation for the parabola.205views
Multiple ChoiceGraph the parabola 8(x+1)=(y−2)28\left(x+1\right)=\left(y-2\right)^28(x+1)=(y−2)2 , and find the focus point and directrix line.187views
Multiple ChoiceIf a parabola has the focus at (2,4)\left(2,4\right)(2,4) and a directrix line x=−4x=-4x=−4 , find the standard equation for the parabola.145views1rank
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. x^2 - 4x - 2y = 0357views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (12,0); Directrix: x=-12514views
Textbook QuestionIdentify the conic represented by the equation without completing the square. 4x^2 - 9y^2 - 8x + 12y - 144 = 0694views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)478views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01410views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x639views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)478views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01410views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x639views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)478views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11808views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 8x460views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x639views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11808views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = 4x201views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = 4y236views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = - 4y304views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x207views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x207views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 16x149views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = - 8x162views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = 12y187views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = - 16y182views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0259views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0259views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. 8x^2 + 4y = 0241views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (7, 0); Directrix: x = - 7504views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 5, 0); Directrix: x = 5218views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15216views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15216views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25198views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25198views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)253views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)253views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)253views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (3, 2); Directrix: x = - 1271views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 3, 4); Directrix: y = 2180views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = 4(x - 1)244views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (x + 1)^2 = - 4(y + 1)208views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = - 4(x - 1)209views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)231views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)231views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x + 1)^2 = - 8(y + 1)151views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 3)^2 = 12(x + 1)156views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 1)^2 = - 8x180views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 - 2x - 4y + 9 =0191views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. y^2 - 2y + 12x - 35 = 0254views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 + 6x - 4y + 1 = 0164views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. y^2 - 4x + 2y + 21 = 0248views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0303views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0303views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3197views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3197views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3197views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? x = - 4(y - 1)^2 + 3216views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. (y - 2)^2 = x + 4 y = - (1/2)x144views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = y^2 - 3 x = y^2 - 3y179views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = (y + 2)^2 - 1 (x - 2)^2 + (y + 2)^2 = 1282views