03:53Determine if an Equation is a Hyperbola, Ellipse, Parabola or CircleMario's Math Tutoring476views
Multiple ChoiceGraph the parabola −4(y+1)=(x+1)2-4\left(y+1\right)=\left(x+1\right)^2−4(y+1)=(x+1)2, and find the focus point and directrix line.224views
Multiple ChoiceIf a parabola has the focus at (0,−1)\left(0,-1\right)(0,−1) and a directrix line y=1y=1y=1, find the standard equation for the parabola.208views
Multiple ChoiceGraph the parabola 8(x+1)=(y−2)28\left(x+1\right)=\left(y-2\right)^28(x+1)=(y−2)2 , and find the focus point and directrix line.193views
Multiple ChoiceIf a parabola has the focus at (2,4)\left(2,4\right)(2,4) and a directrix line x=−4x=-4x=−4 , find the standard equation for the parabola.147views1rank
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. x^2 - 4x - 2y = 0376views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (12,0); Directrix: x=-12524views
Textbook QuestionIdentify the conic represented by the equation without completing the square. 4x^2 - 9y^2 - 8x + 12y - 144 = 0708views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)495views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01440views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x660views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)495views
Textbook QuestionIdentify the conic represented by the equation without completing the square. y^2 + 4x + 2y - 15 = 01440views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x660views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (x-4)^2 = 4(y+1)495views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11817views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 8x479views
Textbook QuestionFind the vertex, focus, and directrix of the parabola with the given equation. Then graph the parabola. (y-2)^2 = -16x660views
Textbook QuestionFind the standard form of the equation of the parabola satisfying the given conditions. Focus: (0,-11); Directrix: y=11817views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = 4x215views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = 4y243views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). x^2 = - 4y319views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x214views
Textbook QuestionIn Exercises 1–4, find the focus and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). y^2 = - 4x214views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = 16x152views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 = - 8x166views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = 12y198views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. x^2 = - 16y186views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0269views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. y^2 - 6x = 0269views
Textbook QuestionIn Exercises 5–16, find the focus and directrix of the parabola with the given equation. Then graph the parabola. 8x^2 + 4y = 0249views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (7, 0); Directrix: x = - 7514views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 5, 0); Directrix: x = 5225views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15220views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, 15); Directrix: y = - 15220views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25201views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (0, - 25); Directrix: y = 25201views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)258views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)258views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Vertex: (2, - 3); Focus: (2, - 5)258views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (3, 2); Directrix: x = - 1275views
Textbook QuestionIn Exercises 17–30, find the standard form of the equation of each parabola satisfying the given conditions. Focus: (- 3, 4); Directrix: y = 2184views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = 4(x - 1)249views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (x + 1)^2 = - 4(y + 1)212views
Textbook QuestionIn Exercises 31–34, find the vertex, focus, and directrix of each parabola with the given equation. Then match each equation to one of the graphs that are shown and labeled (a)–(d). (y - 1)^2 = - 4(x - 1)214views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)240views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x - 2)^2 = 8(y - 1)240views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (x + 1)^2 = - 8(y + 1)156views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 3)^2 = 12(x + 1)160views
Textbook QuestionIn Exercises 35–42, find the vertex, focus, and directrix of each parabola with the given equation. Then graph the parabola. (y + 1)^2 = - 8x185views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 - 2x - 4y + 9 =0195views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. y^2 - 2y + 12x - 35 = 0266views
Textbook QuestionIn Exercises 43–48, convert each equation to standard form by completing the square on x or y. Then find the vertex, focus, and directrix of the parabola. Finally, graph the parabola. x^2 + 6x - 4y + 1 = 0167views
Textbook QuestionIn Exercises 49–56, identify each equation without completing the square. y^2 - 4x + 2y + 21 = 0258views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0311views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y^2 + 6y - x + 5 = 0311views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3202views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3202views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? y = - x^2 + 4x - 3202views
Textbook QuestionIn Exercises 57–62, use the vertex and the direction in which the parabola opens to determine the relation's domain and range. Is the relation a function? x = - 4(y - 1)^2 + 3220views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. (y - 2)^2 = x + 4 y = - (1/2)x149views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = y^2 - 3 x = y^2 - 3y182views
Textbook QuestionIn Exercises 63–68, find the solution set for each system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection. Check all solutions in both equations. x = (y + 2)^2 - 1 (x - 2)^2 + (y + 2)^2 = 1289views