Multiple ChoiceSolve the Equation. 3(2−5x)=4x+253\left(2-5x\right)=4x+253(2−5x)=4x+25378views29rank
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. x4+16=x3\frac{x}{4}+\frac16=\frac{x}{3}4x+61=3x273views5rank3comments
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. −2(5−3x)+x=7x−10-2\left(5-3x\right)+x=7x-10−2(5−3x)+x=7x−10279views6rank2comments
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. 5x+17=8x+12−3(x+4)5x+17=8x+12-3\left(x+4\right)5x+17=8x+12−3(x+4)179views
Multiple ChoiceSolve the equation.92+14(x+2)=34x\frac92+\frac14\left(x+2\right)=\frac34x29+41(x+2)=43x304views8rank
Multiple ChoiceSolve the equation. Then state whether it is an identity, conditional, or inconsistent equation. 5x+17=8x+12−3(x+4)5x+17=8x+12-3\left(x+4\right)281views5rank
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 1/x + 2 = 3/x246views
Textbook QuestionSolve each equation. A= 24f / B(p+1), for f (approximate annual interest rate)318views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. (x−2)/2x + 1 = (x+1)/x237views
Textbook QuestionDecide whether each statement is true or false. The solution set of 2x+5=x -3 is {-8}.298views
Textbook QuestionSolve each problem. If x represents the number of pennies in a jar in an applied problem, which of the following equations cannot be a correct equation for finding x? (Hint:Solve the equations and consider the solutions.) A. 5x+3 =11 B.12x+6 =-4 C.100x =50(x+3) D. 6(x+4) =x+24264views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 3/(x+1) = 5/(x−1)223views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 11x - (6x - 5) = 40388views
Textbook QuestionDecide whether each statement is true or false. The equation 5x=4x is an example of a contradiction.370views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. (x−6)/(x+5) = (x−3)/(x+1)211views
Textbook QuestionIn Exercises 1–14, simplify the expression or solve the equation, whichever is appropriate. 3x/4 - x/3 + 1 = 4x/5 - 3/20209views
Textbook QuestionIn Exercises 1–14, simplify the expression or solve the equation, whichever is appropriate. 4x-2(1-x)=3(2x+1)-5205views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 1 − 4/(x+7) = 5/(x+7)199views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 2x-5 = 7286views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 7(x-4) = x + 2278views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 2(x-4)+3(x+5)=2x-2289views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 2(x - 1) + 3 = x - 3(x + 1)305views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 6/x − x/3 = 1224views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 2 - (7x + 5) = 13 - 3x231views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 7x + 13 = 2(2x-5) + 3x + 23272views
Textbook QuestionIn Exercises 1–26, solve and check each linear equation. 16 = 3(x - 1) - (x - 7)266views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 1/x−1 + 1/x+1 = 2/x²−1198views
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. (3x+1)/3 - 13/2 = (1-x)/4323views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. x/3 = x/2 - 2287views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 20 - x/3 = x/2259views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. x/5 - 1/2 = x/6314views1rank
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 2/(x+3) − 5/(x+1) = (3x+5)/(x²+4x+3)212views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 3x/5 = 2x/3 + 1237views
Textbook QuestionDetermine whether each equation is an identity, a conditional equation, or a contradic-tion. Give the solution set. 1/2(6x+20) = x+4 +2(x+3)1058views
Textbook QuestionIn Exercises 1–34, solve each rational equation. If an equation has no solution, so state. 3y/(y²+5y+6) + 2/(y²+y−2) = 5y/(y²+2y−3)226views
Textbook QuestionDetermine whether each equation is an identity, a conditional equation, or a contradic-tion. Give the solution set. 2(x-8) = 3x-16721views1comments
Textbook QuestionIn Exercises 15–35, solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 3-5(2x + 1) - 2(x-4) = 0533views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. (x + 3)/6 = 3/8 + (x - 5)/4331views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 5 + (x - 2)/3 = (x + 3)/8251views
Textbook QuestionDetermine whether each equation is an identity, a conditional equation, or a contradic-tion. Give the solution set. -0.6(x-5)+0.8(x-6) = 0.2x - 1.8391views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. I=Prt,for P (simple interest)291views
Textbook QuestionExercises 27–40 contain linear equations with constants in denominators. Solve each equation. 3x/5 - (x - 3)/2 = (x + 2)/3261views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 4/x = 5/2x + 3288views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. P=2l+2w,for w (perimeter of a rectangle)217views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. F = GMm/r², for m (force of gravity)272views
Textbook QuestionSolve each formula for the specified variable. Assume that the denominator is not 0 if variables appear in the denominator. s = 1/2gt², for g (distance traveled by a falling object)248views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 5/2x - 8/9 = 1/18 - 1/3x430views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. (x - 2)/2x + 1 = (x + 1)/x919views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 1/(x - 1) + 5 = 11/(x - 1)551views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 3/(x + 4) - 7 = - 4/(x + 4)281views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 3/(2x - 2) + 1/2 = 2/(x - 1)389views
Textbook QuestionExercises 41–60 contain rational equations with variables in denominators. For each equation, a. write the value or values of the variable that make a denominator zero. These are the restrictions on the variable. b. Keeping the restrictions in mind, solve the equation. 3/(x + 2) + 2/(x - 2) = 8/(x + 2)(x - 2)434views
Textbook QuestionIn Exercises 61–66, find all values of x satisfying the given conditions. y1 = 5(2x - 8) - 2, y2 = 5(x - 3) + 3, and y1 = y2.471views
Textbook QuestionIn Exercises 61–66, find all values of x satisfying the given conditions. y1 = (x - 3)/5, y2 = (x - 5)/4, and y1 - y2 = 1.251views
Textbook QuestionIn Exercises 61–66, find all values of x satisfying the given conditions. y1 = (2x - 1)/(x^2 + 2x - 8), y2 = 2/(x + 4), y3 = 1/(x - 2), and y1 + y2 = y3.323views
Textbook QuestionIn Exercises 67–70, find all values of x such that y = 0. y = 2[3x - (4x - 6)] - 5(x - 6)739views
Textbook QuestionIn Exercises 67–70, find all values of x such that y = 0. y = (x + 6)/(3x - 12) - 5/(x - 4) - 2/3377views
Textbook QuestionIn Exercises 67–70, find all values of x such that y = 0. y = 1/(5x + 5) - 3/(x + 1) + 7/5329views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 4x + 7 = 7(x + 1) - 3x523views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 4(x + 5) = 21 + 4x320views
Textbook QuestionExercises 73–75 will help you prepare for the material covered in the next section. Simplify: √18 - √8275views
Textbook QuestionExercises 73–75 will help you prepare for the material covered in the next section. Rationalize the denominator: (7 + 4√2)/(2 - 5√2).278views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 10x + 3 = 8x + 3246views
Textbook QuestionIn Exercises 71–78, solve each equation. Then determine whether the equation is an identity, a conditional equation, or an inconsistent equation. 5x + 7 = 2x + 7230views
Textbook QuestionThe equations in Exercises 79–90 combine the types of equations we have discussed in this section. Solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 4/(x - 2) + 3/(x + 5) = 7/(x + 5)(x - 2)335views
Textbook QuestionThe equations in Exercises 79–90 combine the types of equations we have discussed in this section. Solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 4x/(x + 3) - 12/(x - 3) = (4x^2 + 36)/(x^2 - 9)259views
Textbook QuestionThe equations in Exercises 79–90 combine the types of equations we have discussed in this section. Solve each equation. Then state whether the equation is an identity, a conditional equation, or an inconsistent equation. 4/(x^2 + 3x - 10) - 1/(x^2 + x - 6) = 3/(x^2 - x - 12)236views
Textbook QuestionRetaining the Concepts. Solve and determine whether 8(x - 3) + 4 = 8x - 21 is an identity, a conditional equation, or an inconsistent equation.236views
Textbook QuestionEvaluate x^2 - x for the value of x satisfying 4(x - 2) + 2 = 4x - 2(2 - x).477views
Textbook QuestionIn Exercises 99–106, solve each equation. 5 - 12x = 8 - 7x - [6 ÷ 3(2 + 5^3) + 5x]281views
Textbook QuestionIn Exercises 99–106, solve each equation. 4x + 13 - {2x - [4(x - 3) - 5]} = 2(x - 6)221views
Textbook QuestionAfter a 30% price reduction, you purchase a 50″ 4K UHD TV for $245. What was the television's price before the reduction?33views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? A = 2lw + 2lh + 2wh for h107views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? S = C/(1 - r) for r37views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? S = P + Prt for r76views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? E = mc^2 for m100views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? V = (1/3)Bh for B72views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? A = (1/2)bh for b111views
Textbook QuestionIn Exercises 35–54, solve each formula for the specified variable. Do you recognize the formula? If so, what does it describe? D = RT for R97views
Textbook QuestionA job pays an annual salary of $57,900, which includes a holiday bonus of $1500. If paychecks are issued twice a month, what is the gross amount for each paycheck?69views
Textbook QuestionFor an international telephone call, a telephone company charges $0.43 for the first minute, $0.32 for each additional minute, and a $2.10 service charge. If the cost of a call is $5.73, how long did the person talk?72views
Textbook QuestionA repair bill on a sailboat came to $2356, including $826 for parts and the remainder for labor. If the cost of labor is $90 per hour, how many hours of labor did it take to repair the sailboat?73views
Textbook QuestionAn automobile repair shop charged a customer $1182, listing $357 for parts and the remainder for labor. If the cost of labor is $75 per hour, how many hours of labor did it take to repair the car?132views
Textbook QuestionThe length of a rectangular pool is 6 meters less than twice the width. If the pool's perimeter is 126 meters, what are its dimensions?159views
Textbook QuestionThe length of the rectangular tennis court at Wimbledon is 6 feet longer than twice the width. If the court's perimeter is 228 feet, what are the court's dimensions?134views
Textbook QuestionA rectangular soccer field is twice as long as it is wide. If the perimeter of the soccer field is 300 yards, what are its dimensions?109views
Textbook QuestionA rectangular swimming pool is three times as long as it is wide. If the perimeter of the pool is 320 feet, what are its dimensions?168views
Textbook QuestionExercises 19–20 involve markup, the amount added to the dealer's cost of an item to arrive at the selling price of that item. The selling price of a refrigerator is $1198. If the markup is 25% of the dealer's cost, what is the dealer's cost of the refrigerator?106views
Textbook QuestionIncluding a 17.4% hotel tax, your room in Chicago cost $287.63 per night. Find the nightly cost before the tax was added.92views
Textbook QuestionIncluding a 10.5% hotel tax, your room in San Diego cost $216.58 per night. Find the nightly cost before the tax was added.164views
Textbook QuestionAfter a 20% reduction, you purchase a television for $336. What was the television's price before the reduction?273views
Textbook QuestionAn electronic pass for a toll road costs $30. The toll is normally $5.00 but is reduced by 30% for people who have purchased the electronic pass. Determine the number of times the road must be used so that the total cost without the pass is the same as the total cost with the pass.73views
Textbook QuestionYou are choosing between two gyms. One gym offers membership for a fee of $40 plus a monthly fee of $25. The other offers membership for a fee of $15 plus a monthly fee of $30. After how many months will the total cost at each gym be the same? What will be the total cost for each gym?111views
Textbook QuestionExercises 141–143 will help you prepare for the material covered in the next section. If the width of a rectangle is represented by x and the length is represented by x + 200, write a simplified algebraic expression that models the rectangle's perimeter.59views
Textbook QuestionIn Exercises 45–47, solve each formula for the specified variable. T = (A-P)/Pr for P53views
Textbook QuestionIn Exercises 45–47, solve each formula for the specified variable. vt + gt^2 = s for g63views
Textbook QuestionIn Exercises 36–43, use the five-step strategy for solving word problems. The length of a rectangular field is 6 yards less than triple the width. If the perimeter of the field is 340 yards, what are its dimensions?112views
Textbook QuestionIn Exercises 36–43, use the five-step strategy for solving word problems. An apartment complex has offered you a move-in special of 30% off the first month's rent. If you pay $945 for the first month, what should you expect to pay for the second month when you must pay full price?89views
Textbook QuestionWork each problem. Elmer borrowed $3150 from his brother Julio to pay for books and tuition. He agreed to repay Julio in 6 months with simple annual interest at 4%. (a)How much will the interest amount to?45views
Textbook QuestionWork each problem. Levada borrows $30,900 from her bank to open a florist shop. She agrees to repay the money in 18 months with simple annual interest of 5.5%. (a)How much must she pay the bank in 18 months?52views
Textbook QuestionSolve each problem. How long will it take a car to travel 400 mi at an average rate of 50 mph?39views
Textbook QuestionSolve each problem. If a train travels at 80 mph for 15 min, what is the distance traveled?34views
Textbook QuestionSolve each problem. If a person invests $500 at 2% simple interest for 4 yr, how much interest is earned?38views
Textbook QuestionSolve each problem. If 120 L of an acid solution is 75% acid, how much pure acid is there in the mixture?34views
Textbook QuestionSolve each problem. Which one or more of the following cannot be a correct equation to solve a geometry problem, if x represents the length of a rectangle? (Hint: Solve each equation and consider the solution.) A. 2x+2(x- ) = 14 B. -2x+7(5-x) = 52 C. 5(x+2)+5x = 10 D. 2x+2(x-3) = 2244views
Textbook QuestionSolve each problem. See Example 1. Michael must build a rectangular storage shed. He wants the length to be 6 ft greater than the width, and the perimeter will be 44 ft. Find the length and the width of the shed.42views
Textbook QuestionSolve each problem. See Example 1. The length of a rectangular label is 2.5 cm less than twice the width. The perimeter is 40.6 cm. Find the width. (Side lengths in the figure are in centimeters.)44views
Textbook QuestionSolve each problem. See Example 1. The perimeter of a triangular plot of land is 2400 ft.The longest side is 200 ft less than twice the shortest. The middle side is 200 ft less than the longest side. Find the lengths of the three sides of the triangular plot.43views
Textbook QuestionSolve each problem. See Example 2. Elwyn averaged 50 mph traveling from Denver to Minneapolis. Returning by a different route that covered the same number of miles, he averaged 55 mph. What is the distance between the two cities to the nearest ten miles if his total traveling time was 32 hr?47views
Textbook QuestionSolve each problem. See Example 4. In planning her retirement, Kaya deposits some money at 2.5% interest, and twice as much money at 3%. Find the amount deposited at each rate if the total annual interest income is $850.32views
Textbook QuestionSolve each problem. See Example 4. Zhu inherited $200,000 from her grandmother. She first gave 30% to her favorite charity. She invested some of the rest at 1.5% and some at 4%, earning $4350 interest per year. How much did she invest at each rate?44views
Textbook QuestionSolve each problem. See Examples 5 and 6. Formaldehyde is an indoor air pollutant formerly found in plywood, foam insulation, and carpeting. When concentrations in the air reach 33 micrograms per cubic foot (μg/ft^3), eye irritation can occur. One square foot of new plywood could emit 140 μg per hr. (Data from A. Hines, Indoor Air Quality & Control.) A room has 100 ft^2 of new plywood flooring. Find a linear equation F that computes the amount of formaldehyde, in micrograms, emitted in x hours.51views
Textbook QuestionSolve each problem. See Examples 5 and 6. Formaldehyde is an indoor air pollutant formerly found in plywood, foam insulation, and carpeting. When concentrations in the air reach 33 micrograms per cubic foot (μg/ft^3), eye irritation can occur. One square foot of new plywood could emit 140 μg per hr. (Data from A. Hines, Indoor Air Quality & Control.) The room contains 800 ft^3 of air and has no ventilation. Determine how long it would take for concentrations to reach 33 μg/ft^3. (Round to the nearest tenth.)42views
Textbook QuestionSolve each problem. Dimensions of a Square. If the length of each side of a square is decreased by 4 in., the perimeter of the new square is 10 in. more than half the perimeter of the original square. What are the dimensions of the original square?38views
Textbook QuestionSolve each problem. Speed of a PlaneMary Lynn left by plane to visit her mother in Louisiana, 420 km away. Fifteen minutes later, her mother left to meet her at the airport. She drove the 20 km to the airport at 40 km per hr, arriving just as the plane taxied in. What was the speed of the plane?54views
Textbook QuestionSolve each problem. (Modeling) Lead IntakeAs directed by the 'Safe Drinking Water Act' of December 1974, the EPA proposed a maximum lead level in public drinking water of 0.05 mg per liter. This standard assumed an individual consumption of two liters of water per day. (a)If EPA guidelines are followed, write an equation that models the maximum amount of lead A ingested in x years. Assume that there are 365.25 days in a year.39views
Textbook QuestionSolve each problem. (Modeling) Online Retail SalesProjected retail e-commerce sales (in billions of dollars) for the years 2016–2022 can be modeled by the equation y=52.304x+396.80, where x=0 corresponds to 2016, x=1 corresponds to 2017, and so on. Based on this model, find projected retail e-commerce sales in 2022 to the nearest tenth of a billion. (Data from www.statista.com)35views
Textbook QuestionIn the metric system of weights and measures, temperature is measured in degrees Celsius (°C) instead of degrees Fahrenheit (°F). To convert between the two systems, we use the equations. C =5/9 (F-32) and F = 9/5C+32. In each exercise, convert to the other system. Round answers to the nearest tenth of a degree if necessary. 20°C16views
Textbook QuestionIn the metric system of weights and measures, temperature is measured in degrees Celsius (°C) instead of degrees Fahrenheit (°F). To convert between the two systems, we use the equations. C =5/9 (F-32) and F = 9/5C+32. In each exercise, convert to the other system. Round answers to the nearest tenth of a degree if necessary. 50°F21views
Textbook QuestionWork each problem. Round to the nearest tenth of a degree if necessary. Temperature of VenusVenus is the hottest planet, with a surface temperature of 867°F. What is this temperature in degrees Celsius? (Data from The World Almanac and Book of Facts.)12views
Textbook QuestionWork each problem. Round to the nearest tenth of a degree if necessary. Temperature in South CarolinaA record high temperature of 113°F was recorded for the state of South Carolina on June 29, 2012. What is the corresponding Celsius temperature? (Data from U.S. National Oceanic and Atmospheric Administration.)14views
Textbook QuestionIn the metric system of weights and measures, temperature is measured in degrees Celsius (°C) instead of degrees Fahrenheit (°F). To convert between the two systems, we use the equations. C =5/9 (F-32) and F = 9/5C+32. In each exercise, convert to the other system. Round answers to the nearest tenth of a degree if necessary. 100°F23views
Textbook QuestionSolve each problem. See Example 2. Two planes leave Los Angeles at the same time. One heads south to San Diego, while the other heads north to San Francisco. The San Diego plane flies 50 mph slower than the San Francisco plane. In 1/2 hr, the planes are 275 mi apart. What are their speeds?16views
Textbook QuestionSolve each problem. See Example 2. In the Apple Hill Fun Run, Mary runs at 7 mph, Janet at 5 mph. If they start at the same time, how long will it be before they are 1.5 mi apart?15views
Textbook QuestionSolve each problem. See Example 2. At the 2008 Summer Olympics in Beijing, Usain Bolt set a new Olympic and world record in the 100-m dash with a time of 9.69 sec. If this pace could be maintained for an entire 26-mi marathon, what would his time be? How would this time compare to the fastest time for a marathon, which is 2 hr, 3 min, 23 sec, set in 2013? (Hint: 1 m ≈ 3.281 ft.) (Data from Sports Illustrated Almanac.)17views
Textbook QuestionSolve each problem. See Example 2. Callie took 20 min to drive her boat upstream to water-ski at her favorite spot. Coming back later in the day, at the same boat speed, took her 15 min. If the current in that part of the river is 5 km per hr, what was her boat speed?18views
Textbook QuestionSolve each problem. See Example 3. How many gallons of a 5% acid solution must be mixed with 5 gal of a 10% solution to obtain a 7% solution?11views
Textbook QuestionSolve each problem. See Example 3. Aryan wishes to strengthen a mixture from 10% alcohol to 30% alcohol. How much pure alcohol should be added to 7 L of the 10% mixture?14views
Textbook QuestionSolve each problem. See Example 3. How much water should be added to 8 mL of 6% saline solution to reduce the concentration to 4%?15views
Textbook QuestionSolve each problem. See Example 4. Cody sells some property for $240,000. The money will be paid off in two ways: a short-term note at 2% interest and a long-term note at 2.5%. Find the amount of each note if the total annual interest paid is $5500.22views
Textbook QuestionAfter a 20% reduction, a 42-inch HDTV sold for $256. What was the price before the reduction?15views
Textbook QuestionIn Exercises 137–140, determine whether each statement is true or false. If the statement is false, make the necessary change(s) to produce a true statement. The equation |x| = - 6 is equivalent to x = 6 or x = - 6.72views
Textbook QuestionIn Exercises 91–100, find all values of x satisfying the given conditions. y = |2 - 3x| and y = 13119views
Textbook QuestionThe rule for rewriting an absolute value equation without absolute value bars can be extended to equations with two sets of absolute value bars: If u and v represent algebraic expressions, then |u| = |v| is equivalent to u = v or u = - v. Use this to solve the equations in Exercises 77–84. |4x - 3| = |4x - 5|123views
Textbook QuestionThe rule for rewriting an absolute value equation without absolute value bars can be extended to equations with two sets of absolute value bars: If u and v represent algebraic expressions, then |u| = |v| is equivalent to u = v or u = - v. Use this to solve the equations in Exercises 77–84. |3x - 1| = |x + 5|94views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |2x - 1| + 3 = 3132views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |x + 1| + 5 = 3116views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. 2|4 - (5/2)x| + 6 = 18131views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. 7|5x| + 2 = 16132views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. 2|3x - 2| = 14109views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |2x - 1| = 5115views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |x - 2| = 7120views
Textbook QuestionIn Exercises 61–76, solve each absolute value equation or indicate that the equation has no solution. |x| = 853views
Textbook QuestionSolve each radical equation in Exercises 11–30. Check all proposed solutions. √(x + 8) - √(x - 4) = 259views
Textbook QuestionSolve each equation in Exercises 96–102 by the method of your choice. -4|x+1| + 12 = 052views
Textbook QuestionMatch each equation in Column I with the correct first step for solving it in Column II. √(x+5) = 764views1rank