Table of contents
- 0. Functions7h 52m
- Introduction to Functions16m
- Piecewise Functions10m
- Properties of Functions9m
- Common Functions1h 8m
- Transformations5m
- Combining Functions27m
- Exponent rules32m
- Exponential Functions28m
- Logarithmic Functions24m
- Properties of Logarithms34m
- Exponential & Logarithmic Equations35m
- Introduction to Trigonometric Functions38m
- Graphs of Trigonometric Functions44m
- Trigonometric Identities47m
- Inverse Trigonometric Functions48m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation3h 18m
- 4. Applications of Derivatives2h 38m
- 5. Graphical Applications of Derivatives6h 2m
- 6. Derivatives of Inverse, Exponential, & Logarithmic Functions2h 37m
- 7. Antiderivatives & Indefinite Integrals1h 26m
- 8. Definite Integrals3h 25m
4. Applications of Derivatives
Implicit Differentiation
Problem 3.8.10
Textbook Question
Find the slope of the curve x²+y³=2 at each point where y=1 (see figure). <IMAGE>

1
Start by differentiating the given equation x² + y³ = 2 implicitly with respect to x to find dy/dx.
Apply the product rule and chain rule during differentiation, remembering that y is a function of x.
After differentiating, rearrange the equation to isolate dy/dx on one side.
Substitute y = 1 into the differentiated equation to find the corresponding value of dy/dx.
Finally, solve for dy/dx to determine the slope of the curve at the points where y = 1.
Recommended similar problem, with video answer:

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
3mPlay a video:
Was this helpful?
Watch next
Master Finding The Implicit Derivative with a bite sized video explanation from Nick
Start learningRelated Videos
Related Practice