Your friend claims that all plants are autotrophs because they perform photosynthesis. Is that a correct statement? Explain.
Design an experiment, using radioactive carbon and the heavy isotope of nitrogen (15N2), that would test whether the Rhizobia–pea plant interaction is mutualistic.
Verified step by step guidance
Verified video answer for a similar problem:
Key Concepts
Mutualism
Nitrogen Fixation
Radioactive Tracers
Why is it important for plants to exclude certain ions?
Summarize the difference between active and passive exclusion mechanisms.
There is a conflict between van Helmont's data on willow tree growth and the data on essential nutrients listed in Table 36.1. According to the table, nutrients other than C, H, and O should make up about 4 percent of a willow tree's mass. Most or all of these nutrients should come from soil. But van Helmont claimed that the soil in his experiment lost just 60 g, while the tree gained 74,000 g. Calculate the percentage of the added mass accounted for by soil, and compare it to the predicted 4 percent. State at least one hypothesis to explain the conflict between expected and observed results. How would you test this hypothesis?
The carnivorous plant Nepenthes bicalcarata ('fanged pitcher plant') has a unique relationship with a species of ant—Camponotus schmitzi ('diving ant'). The diving ants are not digested by the pitcher plants, but instead live on the plants and consume nectar. Diving ants also dive into the digestive juices in the pitcher, swim to the bottom, and capture and consume trapped insects, leaving uneaten body parts and ant feces behind. What nutritional impact do the ants have on fanged pitcher plants? Do the pitcher plants derive any nutritional benefit from this relationship? Based only on the information provided here, make a prediction on the effect of diving ants on overall pitcher plant growth.
The carnivorous plant Nepenthes bicalcarata ('fanged pitcher plant') has a unique relationship with a species of ant—Camponotus schmitzi ('diving ant'). The diving ants are not digested by the pitcher plants, but instead live on the plants and consume nectar. Diving ants also dive into the digestive juices in the pitcher, swim to the bottom, and capture and consume trapped insects, leaving uneaten body parts and ant feces behind.
What nutritional impact do the ants have on fanged pitcher plants?
Do the pitcher plants derive any nutritional benefit from this relationship?
Nitrogen is a key nutrient often obtained by carnivorous plants from the insects they digest. Are the results presented here what would be expected if nitrogen is a limiting nutrient? Explain.
The carnivorous plant Nepenthes bicalcarata ('fanged pitcher plant') has a unique relationship with a species of ant—Camponotus schmitzi ('diving ant'). The diving ants are not digested by the pitcher plants but instead live on the plants and consume nectar. Diving ants also dive into the digestive juices in the pitcher, swim to the bottom, and capture and consume trapped insects, leaving uneaten body parts and ant feces behind.
What nutritional impact do the ants have on fanged pitcher plants? Do the pitcher plants derive any nutritional benefit from this relationship?
Carnivorous plants and legumes (e.g., peas, soybeans) both absorb key nutrients directly from other organisms. How is nutrient acquisition in pitcher plants similar to that in legumes? How is it different?
