Draw a plant cell in pure water. Add dots to indicate solutes inside the cell. Now add more dots to indicate an increase in solute potential inside the cell. Add an arrow showing the net direction of water movement in response. Add arrows showing the direction of wall pressure and turgor pressure in response to water movement. Repeat the same exercise, but this time, add solutes to the solution outside the cell at a concentration that is greater than inside the cell.
Consider a tree that is 50 m tall and is transpiring roughly 90 liters of water each day. Approximately how many calories will the tree use to transpire this quantity of water?
Verified Solution
Key Concepts
Transpiration
Caloric Energy in Plants
Water's Latent Heat of Vaporization
A mutant plant lacking the ability to pump protons out of leaf companion cells will be unable to do which of the following? a. initiate transpiration b. load sucrose into sieve-tube elements c. carry out photosynthesis d. transport water through the xylem
Your friend claims that phloem always carries sugars down a plant. What, if anything, is wrong with that statement?
Salt is used to melt snow and keep roads clear during the winter in many cities. Land adjacent to de-iced roads often ends up with a high concentration of salt in the soil. Explain why plants growing near salted roads may appear wilted in the spring.
Atmospheric CO2 has been increasing rapidly since the late 1800s, largely due to human activities. Recall that CO2 enters leaves through stomata and can then be used for photosynthesis. However, transpiration occurs as a result of water evaporating through stomata. How have plants responded to elevated CO2 levels? Which of these structural features can help to limit water loss in plants that occupy dry habitats? a. abundant companion cells and sieve-tube elements b. stomata that are located in pits on the undersides of their leaves, or narrow, needlelike leaves c. extensive networks of xylem and phloem d. stomata that are located on the top surface of leaves, or broad leaves
Atmospheric CO2 has been increasing rapidly since the late 1800s, largely due to human activities. Recall that CO2 enters leaves through stomata and can then be used for photosynthesis. However, transpiration occurs as a result of water evaporating through stomata. How have plants responded to elevated CO2 levels? What impact, if any, do you predict elevated CO2 levels will have on the number of stomata in leaves, and on the transpiration rate?