- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
30. Overview of Animals
Overview of Animals
Problem 3b
Textbook Question
Which of the following was probably the least important factor in bringing about the Cambrian explosion? a. the emergence of predator-prey relationships b. an increase in the concentration of atmospheric oxygen c. the movement of animals onto land d. the origin of Hox genes

1
Identify the time period of the Cambrian explosion, which occurred around 541 million years ago, marking a significant increase in the diversity and complexity of life forms.
Analyze the options given: the emergence of predator-prey relationships, an increase in atmospheric oxygen, the movement of animals onto land, and the origin of Hox genes, and consider how each could influence the diversification of life during the Cambrian period.
Understand that the emergence of predator-prey relationships and the origin of Hox genes both played crucial roles in the development of complex body structures and behaviors, which are characteristic of the Cambrian explosion.
Consider the role of increased atmospheric oxygen, which would have supported more complex metabolic processes and larger body sizes, contributing to the diversification seen during the Cambrian explosion.
Evaluate the timing of animals moving onto land, which is generally accepted to have occurred in the Ordovician period, following the Cambrian. This suggests that the movement of animals onto land did not directly influence the events of the Cambrian explosion.
Recommended similar problem, with video answer:

This video solution was recommended by our tutors as helpful for the problem above
Video duration:
54sPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Cambrian Explosion
The Cambrian explosion refers to a significant period in Earth's history, approximately 541 million years ago, when a rapid diversification of life forms occurred. This event marked the appearance of most major animal phyla and is characterized by the development of complex organisms with hard body parts, leading to a more complex ecosystem. Understanding this event is crucial for analyzing the factors that contributed to the rapid evolution of life.
Recommended video:
Cambrian Explosion
Hox Genes
Hox genes are a group of related genes that determine the body plan and organization of an organism during embryonic development. They play a critical role in the segmentation and differentiation of body structures in animals. The origin and evolution of Hox genes are believed to have been pivotal in enabling the complexity seen in Cambrian organisms, influencing their morphology and diversity.
Recommended video:
Guided course
Hox Genes
Predator-Prey Relationships
Predator-prey relationships are ecological interactions where one organism (the predator) hunts and consumes another (the prey). The emergence of these relationships during the Cambrian period likely drove evolutionary adaptations, leading to increased diversity and complexity in animal forms. This dynamic interaction is essential for understanding the ecological pressures that may have contributed to the Cambrian explosion.
Recommended video:
Guided course
Predator & Prey Adaptations
Watch next
Master Overview of Animals - 1 with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice