Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
50. Population Ecology
Introduction to Population Ecology
Problem 7c
Textbook Question
Which of the following represents a demographic transition? a. A population switches from exponential to logistic growth. b. A population reaches a fertility rate of zero. c. There are equal numbers of individuals in all age-groups. d. A population switches from high birth and death rates to low birth and death rates.
![](/channels/images/assetPage/verifiedSolution.png)
1
Identify the concept of demographic transition: Demographic transition refers to the shift in a population's birth and death rates from high to low levels over time, typically as a society progresses economically and socially.
Analyze option a: Exponential to logistic growth describes a change in the growth pattern of a population, but does not specifically address changes in birth and death rates.
Analyze option b: A fertility rate of zero would imply no births occurring, which is an extreme scenario not typically associated with demographic transition.
Analyze option c: Having equal numbers of individuals in all age-groups describes age distribution, but does not directly relate to changes in birth and death rates.
Analyze option d: This option directly describes the shift from high to low birth and death rates, which is the hallmark of demographic transition.
Recommended similar problem, with video answer:
![](/channels/images/assetPage/verifiedSolution.png)
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
1mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Demographic Transition Model
The Demographic Transition Model (DTM) describes the transition of a population from high birth and death rates to low birth and death rates as a country develops economically. This model typically includes four or five stages, illustrating how societal changes, such as improved healthcare and education, influence population dynamics over time.
Recommended video:
Guided course
Population Demography
Population Growth Patterns
Population growth patterns refer to the ways in which populations increase or decrease over time, often characterized by exponential growth in early stages due to high birth rates and low mortality. As a population transitions through different stages of development, these patterns can shift to logistic growth, where resources become limited and growth stabilizes.
Recommended video:
Guided course
Linear Population Growth Example 1
Fertility Rate
The fertility rate is a measure of the number of live births per woman of childbearing age in a population. A fertility rate of zero indicates that a population is not replacing itself, which can lead to population decline. Understanding fertility rates is crucial for analyzing demographic transitions and their implications for population structure and growth.
Recommended video:
Guided course
Metabolic Rate
Watch next
Master Population Ecology with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice