Hi. In this video, we're going to talk about gas exchange and circulation, and look at the anatomy of the respiratory system and the cardiovascular system. Now the job of the respiratory system is to bring in gases from the environment, and specifically to take in O2 to the body. And it's going to output waste, CO2, from the body. And we'll talk about in a second where these gases are coming from. Now the circulatory system kind of has a hand in everything. It does a lot of stuff. It's involved in a lot of processes. We're just going to focus on its role in terms of gas exchange here. So while the circulatory system transports oxygen and carbon dioxide, it also transports nutrients from digestion, hormones in the endocrine system, and blood cells, including white blood cells for the immune system. But we're not going to focus on any of that, we're just going to focus on the transport of these gases. So the circulatory system is going to be responsible for delivering that oxygen to cells, which they need for cellular respiration. It's also going to pick up and remove waste carbon dioxide, which is a byproduct of cellular respiration. So these gases that you are breathing in and exhaling are needed for cellular respiration and waste from cellular respiration. Pretty incredible to think about what's coming in and out of our lungs as being involved in chemical reactions at the subcellular level. Now, ventilation is going to be sort of the first step of this larger process of gas exchange, gas exchange and circulation rather. So ventilation is when air moves into, you know, the organ of gas exchange, like the lungs, with some organisms, and we're not going to cover this here, we'll cover it in a different lesson, they'll actually be taking in water and passing it through their gills. But for our purposes, we're going to be using the example of taking air into the lungs. So then gas exchange is going to occur, which is when oxygen will diffuse, you know, through the lung tissue, basically, into the bloodstream, and carbon dioxide will diffuse out of the bloodstream and into the lungs. And this is, of course, all going to happen, as it says here, at the respiratory tissue surface. Again, that's going to be our lungs. Right? That's our respiratory system. You know, we don't have gills. Now, circulation is the transport of those diffused gases. Right? So oxygen is going to be transported to the tissues, where it'll be used for cellular respiration. Right? It's the final electron acceptor of the electron transport chain. And CO2, carbon dioxide, is going to make its way into the circulatory system, and from there to the lungs. And this CO2, again, is a byproduct of cellular respiration, specifically glycolysis and the citric acid cycle, which are going to be the components that break down glucose. So each of the carbons in glucose is going to be turned into CO2 and exhaled. So this is a very complicated process, and it involves two organ systems working in conjunction. We have the circulatory system, which sometimes is called the cardiovascular system, and we have the respiratory system, which is sometimes called the respiratory system. Just getting really, you know, it only has the one name. Now, the circulatory system and respiratory system are going to function in conjunction, as you can see right here in this figure. And, basically, there's going to be, two loops of circulation. What we call pulmonary circulation, which is when, blood that needs oxygen, blood that doesn't have oxygen goes from the heart into the lungs. So here's our heart, these are our lungs. So the deoxygenated blood, as it's called, is going to go into the lungs, or it's going to pick up oxygen and make its way back into the heart full of oxygen now. So just, for reference, when you see diagrams, deoxygenated blood is often shown in blue, and the oxygenated blood is shown in red. That's what these colors represent. So once that oxygenated blood comes back into the heart, it's going to be pumped out into the bodies, into the body, only one. And in the body's tissues the, oxygen is going to be picked up and the CO2 is going to be unloaded into the blood, and then that deoxygenated blood is going to make its way back to the heart. We call this systemic circulation. So pulmonary circulation takes deoxygenated blood to the lungs and brings it back to the heart. Systemic circulation takes oxygenated blood out into the body, gases diffuse there, and then it brings the deoxygenated blood back to the heart. And of course, of course, I keep emphasizing this point, those gases are being used for and byproducts of cellular respiration. With that, let's flip the page.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
40. Circulatory System
Circulatory and Respiratory Anatomy
Video duration:
6mPlay a video:
Related Videos
Related Practice
Circulatory and Respiratory Anatomy practice set
- Problem sets built by lead tutorsExpert video explanations