Hi. In this video, we're going to be talking about soil and the important nutrients found in it. Plants, as you know, produce their own food. They make sugars from photosynthesis, but they still have many nutritional requirements outside of this. So even though 95% of a plant's dry weight comes from carbon, hydrogen, and oxygen, which they can obtain from CO2 and water, which of course are essential components to photosynthesis, most plants still need a bunch of stuff outside of this. In fact, vascular plants require 17 essential nutrients in order to live. Some nutrients are needed in greater quantities than others. Macronutrients are those that are needed in large quantities, and these include nitrogen, phosphorus, and potassium. In fact, these nutrients are so important we often call them limiting nutrients, because the availability of these limits the plant's ability to grow. And, you know, if you think about what these nutrients are used for, you know, they go into things like nucleic acids, proteins, phospholipids, you know, essential stuff that any cell needs to exist. Even though micronutrients are needed in smaller quantities, they're still just as essential to plants' life. Micronutrients include all of these elements you see here, and generally they're only found in trace amounts, very very small amounts. In fact, as the old saying goes, dosage makes the poison. These nutrients can be potentially toxic to plants in high concentrations. That is to say, if plants get too many of these nutrients, it can actually be very harmful for them. Some nutrients are considered mobile, in that they can be transported around the plant, while others are called immobile nutrients because they're kind of stuck where they are. So often when there are nutrient deficiencies for a plant, you'll see the old leaves die off, and they do this in order to sustain the young leaves. They're transporting their nutrients to the young leaves and dying off in the process, but this allows the young leaves to continue living in the hope that, you know, maybe they'll be able to get the nutrients they need. Now, young leaves tend to be the first to show nutrient deficiencies. That is, they're the most sensitive to nutrient deficiencies. And here in this image, if you're curious, you can see all of the different symptoms for the different types of nutrient deficiencies you might see in a plant, those that will become apparent in the old growth, and those that will become apparent in the new growth. And of course, over here, it's a nice little diagram of a plant, all the nutrients that are essential to it, and of course, the CO2, H2O, and sunlight that are part of photosynthesis. With that, let's turn the page.
Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 44m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses19m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
35. Soil
Soil and Nutrients
Video duration:
3mPlay a video:
Related Videos
Related Practice
Soil and Nutrients practice set
