Table of contents
- 1. Introduction to Biology2h 40m
- 2. Chemistry3h 40m
- 3. Water1h 26m
- 4. Biomolecules2h 23m
- 5. Cell Components2h 26m
- 6. The Membrane2h 31m
- 7. Energy and Metabolism2h 0m
- 8. Respiration2h 40m
- 9. Photosynthesis2h 49m
- 10. Cell Signaling59m
- 11. Cell Division2h 47m
- 12. Meiosis2h 0m
- 13. Mendelian Genetics4h 41m
- Introduction to Mendel's Experiments7m
- Genotype vs. Phenotype17m
- Punnett Squares13m
- Mendel's Experiments26m
- Mendel's Laws18m
- Monohybrid Crosses16m
- Test Crosses14m
- Dihybrid Crosses20m
- Punnett Square Probability26m
- Incomplete Dominance vs. Codominance20m
- Epistasis7m
- Non-Mendelian Genetics12m
- Pedigrees6m
- Autosomal Inheritance21m
- Sex-Linked Inheritance43m
- X-Inactivation9m
- 14. DNA Synthesis2h 27m
- 15. Gene Expression3h 20m
- 16. Regulation of Expression3h 31m
- Introduction to Regulation of Gene Expression13m
- Prokaryotic Gene Regulation via Operons27m
- The Lac Operon21m
- Glucose's Impact on Lac Operon25m
- The Trp Operon20m
- Review of the Lac Operon & Trp Operon11m
- Introduction to Eukaryotic Gene Regulation9m
- Eukaryotic Chromatin Modifications16m
- Eukaryotic Transcriptional Control22m
- Eukaryotic Post-Transcriptional Regulation28m
- Eukaryotic Post-Translational Regulation13m
- 17. Viruses37m
- 18. Biotechnology2h 58m
- 19. Genomics17m
- 20. Development1h 5m
- 21. Evolution3h 1m
- 22. Evolution of Populations3h 52m
- 23. Speciation1h 37m
- 24. History of Life on Earth2h 6m
- 25. Phylogeny2h 31m
- 26. Prokaryotes4h 59m
- 27. Protists1h 12m
- 28. Plants1h 22m
- 29. Fungi36m
- 30. Overview of Animals34m
- 31. Invertebrates1h 2m
- 32. Vertebrates50m
- 33. Plant Anatomy1h 3m
- 34. Vascular Plant Transport2m
- 35. Soil37m
- 36. Plant Reproduction47m
- 37. Plant Sensation and Response1h 9m
- 38. Animal Form and Function1h 19m
- 39. Digestive System10m
- 40. Circulatory System1h 57m
- 41. Immune System1h 12m
- 42. Osmoregulation and Excretion50m
- 43. Endocrine System4m
- 44. Animal Reproduction2m
- 45. Nervous System55m
- 46. Sensory Systems46m
- 47. Muscle Systems23m
- 48. Ecology3h 11m
- Introduction to Ecology20m
- Biogeography14m
- Earth's Climate Patterns50m
- Introduction to Terrestrial Biomes10m
- Terrestrial Biomes: Near Equator13m
- Terrestrial Biomes: Temperate Regions10m
- Terrestrial Biomes: Northern Regions15m
- Introduction to Aquatic Biomes27m
- Freshwater Aquatic Biomes14m
- Marine Aquatic Biomes13m
- 49. Animal Behavior28m
- 50. Population Ecology3h 41m
- Introduction to Population Ecology28m
- Population Sampling Methods23m
- Life History12m
- Population Demography17m
- Factors Limiting Population Growth14m
- Introduction to Population Growth Models22m
- Linear Population Growth6m
- Exponential Population Growth29m
- Logistic Population Growth32m
- r/K Selection10m
- The Human Population22m
- 51. Community Ecology2h 46m
- Introduction to Community Ecology2m
- Introduction to Community Interactions9m
- Community Interactions: Competition (-/-)38m
- Community Interactions: Exploitation (+/-)23m
- Community Interactions: Mutualism (+/+) & Commensalism (+/0)9m
- Community Structure35m
- Community Dynamics26m
- Geographic Impact on Communities21m
- 52. Ecosystems2h 36m
- 53. Conservation Biology24m
43. Endocrine System
Endocrine System
Problem 1a
Textbook Question
Textbook QuestionWhich statement is accurate? (A) Hormones that differ in effect reach their target cells by different routes through the body. (B) Pairs of hormones that have the same effect are said to have antagonistic functions. (C) Hormones are often regulated through feedback loops. (D) Hormones of the same chemical class usually have the same function
![](/channels/images/assetPage/verifiedSolution.png)
1
Identify the basic functions and characteristics of hormones in the body. Hormones are chemical messengers that travel through the bloodstream to tissues or organs, affecting many different processes including growth, metabolism, and mood.
Analyze statement (A): Understand that while hormones can have different effects, they generally reach their target cells via the bloodstream, not necessarily by different routes.
Evaluate statement (B): Recognize that hormones with the same effects do not have antagonistic functions; rather, hormones with opposite effects are considered antagonistic.
Consider statement (C): Recall that hormonal regulation often involves feedback loops, where the output of a system acts to regulate its own further activity. This is a common mechanism in endocrine systems to maintain homeostasis.
Review statement (D): Understand that hormones within the same chemical class can have different functions depending on the receptors they bind to and the type of cells they affect.
Recommended similar problem, with video answer:
![](/channels/images/assetPage/verifiedSolution.png)
This video solution was recommended by our tutors as helpful for the problem above
Video duration:
2mPlay a video:
Was this helpful?
Key Concepts
Here are the essential concepts you must grasp in order to answer the question correctly.
Hormonal Signaling
Hormonal signaling involves the release of hormones into the bloodstream, where they travel to target cells to elicit specific responses. Different hormones can have varying effects on different tissues, and they may utilize distinct pathways to reach their targets, highlighting the complexity of endocrine communication.
Recommended video:
Guided course
Hormone Signaling
Feedback Mechanisms
Feedback mechanisms are regulatory processes that maintain homeostasis in the body. In hormonal regulation, feedback loops can be either positive or negative, where negative feedback reduces hormone production in response to high levels, while positive feedback amplifies the response, ensuring precise control over physiological functions.
Recommended video:
Guided course
Negative Feedback
Hormone Classification
Hormones can be classified based on their chemical structure, such as steroids, peptides, or amines. While hormones of the same class may share similar properties, they do not necessarily have the same functions, as their effects depend on the specific receptors they bind to and the target tissues involved.
Recommended video:
Guided course
Plant Hormones and Senescence
Watch next
Master Chemical Signaling with a bite sized video explanation from Jason Amores Sumpter
Start learningRelated Videos
Related Practice