Digital Communications: Fundamentals and Applications, 3rd edition

Published by Pearson (December 30, 2024) © 2025

  • Bernard Sklar
  • Fredric J. Harris

eTextbook

per month

  • Anytime, anywhere learning with the Pearson+ app
  • Easy-to-use search, navigation and notebook
  • Simpler studying with flashcards
$104.00

  • A print text (hardcover or paperback) 
  • Free shipping
  • Also available for purchase as an ebook from all major ebook resellers, including InformIT.com

uCertify

from$140.00

  • Includes the full Pearson e-text, pre- and post-assessments, quizzes, videos, and more
  • Provides hands-on skills to bridge conceptual knowledge and real-world application
  • Powerful student management tools yet easy to implement, customize, and manage
With remarkable clarity, Drs. Bernard Sklar and fred harris introduce every digital communication technology at the heart of todays wireless and Internet revolutions, with completely new chapters on synchronisation, OFDM, and MIMO.
Building on the fields classic, best-selling introduction, the authors provide a unified structure and context for helping students and professional engineers understand each technology, without sacrificing mathematical precision. They illuminate the big picture and details of modulation, coding, and signal processing, tracing signals and processing steps from information source through sink. Throughout, readers will find numeric examples, step-by-step implementation guidance, and diagrams that place key concepts in clear context.
  • Understand signals, spectra, modulation, demodulation, detection, communication links, system link budgets, synchronisation, fading, and other key concepts
  • Apply channel coding techniques, including advanced turbo coding and LDPC
  • Explore multiplexing, multiple access, and spread spectrum concepts and techniques
  • Learn about source coding: amplitude quantising, differential PCM, and adaptive prediction
  • Discover the essentials and applications of synchronisation, OFDM, and MIMO technology
  • Step-by-step coverage helps you master every key digital communications technology, concept, and technique 
  • Covers trellis-coded modulation, fading channels, Reed-Solomon codes, encryption, performance maximization techniques, and much more 
  • Adds coverage of Partial Response Coding, Low-Density Parity Check (LDPC) Codes, OFDM, MIMO, LTE wireless, Software Defined Radio, and 5G, plus three new appendices 
  • Updated CD-ROM contains valuable MathWorks software for students 
  • Solutions Manual will be available for instructors to download from Pearson.com/us 

This edition adds:

  • Coverage of Low-Density Parity Check (LDPC) Codes
  • A full chapter on OFDM, SC-OFDM, and LTE
  • A full chapter on MIMO, MU-MIMO, and Dirty Paper Coding
  • New appendix on OFDM Symbol Formation
  • On-line access to software from MathWorks

Preface     xxiii

Chapter 1  SIGNALS AND SPECTRA     1

1.1 Digital Communication Signal Processing     2

    1.1.1 Why Digital?     2

    1.1.2 Typical Block Diagram and Transformations     4

    1.1.3 Basic Digital Communication Nomenclature     7

    1.1.4 Digital Versus Analog Performance Criteria     9

1.2 Classification of Signals     10

    1.2.1 Deterministic and Random Signals     10

    1.2.2 Periodic and Nonperiodic Signals     10

    1.2.3 Analog and Discrete Signals     10

    1.2.4 Energy and Power Signals     11

    1.2.5 The Unit Impulse Function     12

1.3 Spectral Density     13

    1.3.1 Energy Spectral Density     13

    1.3.2 Power Spectral Density     14

1.4 Autocorrelation     15

    1.4.1 Autocorrelation of an Energy Signal     10

    1.4.2 Autocorrelation of a Periodic (Power) Signal     16

1.5 Random Signals     17

    1.5.1 Random Variables     17

    1.5.2 Random Processes     19

    1.5.3 Time Averaging and Ergodicity     21

    1.5.4 Power Spectral Density and Autocorrelation of a Random Process     22

    1.5.5 Noise in Communication Systems     27

1.6 Signal Transmission Through Linear Systems     30

    1.6.1 Impulse Response     30

    1.6.2 Frequency Transfer Function     31

    1.6.3 Distortionless Transmission     32

    1.6.4 Signals, Circuits, and Spectra     39

1.7 Bandwidth of Digital Data     41

    1.7.1 Baseband Versus Bandpass     41`

    1.7.2 The Bandwidth Dilemma     44

1.8 Conclusion     47

Chapter 2  FORMATTING AND BASEBAND MODULATION     53

2.1 Baseband Systems     54

2.2 Formatting Textual Data (Character Coding)     55

2.3 Messages, Characters, and Symbols     55

    2.3.1 Example of Messages, Characters, and Symbols     56

2.4 Formatting Analog Information     57

    2.4.1 The Sampling Theorem     57

    2.4.2 Aliasing     64

    2.4.3 Why Oversample?     67

    2.4.4 Signal Interface for a Digital System     69

2.5 Sources of Corruption     70

    2.5.1 Sampling and Quantizing Effects     71

    2.5.2 Channel Effects     71

    2.5.3 Signal-to-Noise Ratio for Quantized Pulses     72

2.6 Pulse Code Modulation     73

2.7 Uniform and Nonuniform Quantization     75

        2.7.1 Statistics of Speech Amplitudes     75

        2.7.2 Nonuniform Quantization     77

        2.7.3 Companding Characteristics     77

2.8 Baseband Transmission     79

    2.8.1 Waveform Representation of Binary Digits     79

    2.8.2 PCM Waveform Types     80

    2.8.3 Spectral Attributes of PCM Waveforms     83

    2.8.4 Bits per PCM Word and Bits per Symbol     84

    2.8.5 M-ary Pulse-Modulation Waveforms     86

2.9 Correlative Coding     88

    2.9.1 Duobinary Signaling     88

    2.9.2 Duobinary Decoding     89

    2.9.3 Precoding     90

    2.9.4 Duobinary Equivalent Transfer Function     91

    2.9.5 Comparison of Binary and Duobinary Signaling     93

    2.9.6 Polybinary Signaling     94

2.10 Conclusion     94

Chapter 3  BASEBAND DEMODULATION/DETECTION     99

3.1 Signals and Noise     100

    3.1.1 Error-Performance Degradation in Communication Systems     100

    3.1.2 Demodulation and Detection     101

    3.1.3 A Vectorial View of Signals and Noise     105

    3.1.4 The Basic SNR Parameter for Digital Communication Systems     112

    3.1.5 Why Eb /N0 Is a Natural Figure of Merit     113

3.2 Detection of Binary Signals in Gaussian Noise     114

    3.2.1 Maximum Likelihood Receiver Structure     114

    3.2.2 The Matched Filter     117

    3.2.3 Correlation Realization of the Matched Filter     119

    3.2.4 Optimizing Error Performance     122

    3.2.5 Error Probability Performance of Binary Signaling     126

3.3 Intersymbol Interference     130

    3.3.1 Pulse Shaping to Reduce ISI     133

    3.3.2 Two Types of Error-Performance Degradation     136

    3.3.3 Demodulation/Detection of Shaped Pulses     140

3.4 Equalization     144

    3.4.1 Channel Characterization     144

    3.4.2 Eye Pattern     145

    3.4.3 Equalizer Filter Types     146

    3.4.4 Preset and Adaptive Equalization     152

    3.4.5 Filter Update Rate     155

3.5 Conclusion     156

Chapter 4  BANDPASS MODULATION AND DEMODULATION/DETECTION     161

4.1 Why Modulate?     162

4.2 Digital Bandpass Modulation Techniques     162

    4.2.1 Phasor Representation of a Sinusoid     163

    4.2.2 Phase-Shift Keying     166

    4.2.3 Frequency-Shift Keying     167

    4.2.4 Amplitude Shift Keying     167

    4.2.5 Amplitude-Phase Keying     168

    4.2.6 Waveform Amplitude Coefficient     168

4.3 Detection of Signals in Gaussian Noise     169

    4.3.1 Decision Regions     169

    4.3.2 Correlation Receiver     170

4.4 Coherent Detection     175

    4.4.1 Coherent Detection of PSK     175

    4.4.2 Sampled Matched Filter     176

    4.4.3 Coherent Detection of Multiple Phase-Shift Keying     181

    4.4.4 Coherent Detection of FSK     184

4.5 Noncoherent Detection     187

    4.5.1 Detection of Differential PSK     187

    4.5.2 Binary Differential PSK Example     188

    4.5.3 Noncoherent Detection of FSK     190

    4.5.4 Required Tone Spacing for Noncoherent Orthogonal FSK Signaling     192

4.6 Complex Envelope     196

    4.6.1 Quadrature Implementation of a Modulator     197

    4.6.2 D8PSK Modulator Example     198

    4.6.3 D8PSK Demodulator Example     200

4.7 Error Performance for Binary Systems     202

    4.7.1 Probability of Bit Error for Coherently Detected BPSK     202

    4.7.2 Probability of Bit Error for Coherently Detected, Differentially Encoded Binary PSK     204

    4.7.3 Probability of Bit Error for Coherently Detected Binary Orthogonal FSK     204

    4.7.4 Probability of Bit Error for Noncoherently Detected Binary Orthogonal FSK     206

    4.7.5 Probability of Bit Error for Binary DPSK     208

    4.7.6 Comparison of Bit-Error Performance for Various Modulation Types     210

4.8 M-ary Signaling and Performance     211

    4.8.1 Ideal Probability of Bit-Error Performance     211

    4.8.2 M-ary Signaling     212

    4.8.3 Vectorial View of MPSK Signaling     214

    4.8.4 BPSK and QPSK Have the Same Bit-Error Probability     216

    4.8.5 Vectorial View of MFSK Signaling     217

4.9 Symbol Error Performance for M-ary Systems (M > 2)     221

    4.9.1 Probability of Symbol Error for MPSK     221

    4.9.2 Probability of Symbol Error for MFSK     222

    4.9.3 Bit-Error Probability Versus Symbol Error Probability for Orthogonal Signals     223

    4.9.4 Bit-Error Probability Versus Symbol Error Probability for Multiple-Phase Signaling     226

    4.9.5 Effects of Intersymbol Interference     228

4.10 Conclusion     228

Chapter 5  COMMUNICATIONS LINK ANALYSIS     235

5.1 What the System Link Budget Tells the System Engineer     236

5.2 The Channel     236

    5.2.1 The Concept of Free Space     237

    5.2.2 Error-Performance Degradation     237

    5.2.3 Sources of Signal Loss and Noise     238

5.3 Received Signal Power and Noise Power     243

    5.3.1 The Range Equation     243

    5.3.2 Received Signal Power as a Function of Frequency     247

    5.3.3 Path Loss Is Frequency Dependent     248

    5.3.4 Thermal Noise Power     250

5.4 Link Budget Analysis     252

    5.4.1 Two Eb /N0 Values of Interest     254

    5.4.2 Link Budgets Are Typically Calculated in Decibels     256

    5.4.3 How Much Link Margin Is Enough?     257

    5.4.4 Link Availability     258

5.5 Noise Figure, Noise Temperature, and System Temperature     263

    5.5.1 Noise Figure     263

    5.5.2 Noise Temperature     265

    5.5.3 Line Loss     266

    5.5.4 Composite Noise Figure and Composite Noise Temperature     269

    5.5.5 System Effective Temperature     270

    5.5.6 Sky Noise Temperature     275

5.6 Sample Link Analysis     279

    5.6.1 Link Budget Details     279

    5.6.2 Receiver Figure of Merit     282

    5.6.3 Received Isotropic Power     282

5.7 Satellite Repeaters     283

    5.7.1 Nonregenerative Repeaters     283

    5.7.2 Nonlinear Repeater Amplifiers     288

5.8 System Trade-Offs     289

5.9 Conclusion     290

Chapter 6  CHANNEL CODING: PART 1: WAVEFORM CODES AND BLOCK CODES     297

6.1 Waveform Coding and Structured Sequences     298

    6.1.1 Antipodal and Orthogonal Signals     298

    6.1.2 M-ary Signaling     300

    6.1.3 Waveform Coding     300

    6.1.4 Waveform-Coding System Example     304

6.2 Types of Error Control     307

    6.2.1 Terminal Connectivity     307

    6.2.2 Automatic Repeat Request     307

6.3 Structured Sequences     309

    6.3.1 Channel Models     309

    6.3.2 Code Rate and Redundancy     311

    6.3.3 Parity-Check Codes     312

    6.3.4 Why Use Error-Correction Coding?     315

6.4 Linear Block Codes     320

    6.4.1 Vector Spaces     320

    6.4.2 Vector Subspaces     321

    6.4.3 A (6, 3) Linear Block Code Example     322

    6.4.4 Generator Matrix     323

    6.4.5 Systematic Linear Block Codes     325

    6.4.6 Parity-Check Matrix     326

    6.4.7 Syndrome Testing     327

    6.4.8 Error Correction     329

    6.4.9 Decoder Implementation     332

6.5 Error-Detecting and Error-Correcting Capability     334

    6.5.1 Weight and Distance of Binary Vectors     334

    6.5.2 Minimum Distance of a Linear Code     335

    6.5.3 Error Detection and Correction     335

    6.5.4 Visualization of a 6-Tuple Space     339

    6.5.5 Erasure Correction     341

6.6 Usefulness of the Standard Array     342

    6.6.1 Estimating Code Capability     342

    6.6.2 An (n, k) Example     343

    6.6.3 Designing the (8, 2) Code     344

    6.6.4 Error Detection Versus Error Correction Trade-Offs     345

    6.6.5 The Standard Array Provides Insight     347

6.7 Cyclic Codes     349

    6.7.1 Algebraic Structure of Cyclic Codes     349

    6.7.2 Binary Cyclic Code Properties     351

    6.7.3 Encoding in Systematic Form     352

    6.7.4 Circuit for Dividing Polynomials     353

    6.7.5 Systematic Encoding with an (n ? k)-Stage Shift Register     356

    6.7.6 Error Detection with an (n ? k)-Stage Shift Register     358

6.8 Well-Known Block Codes     359

    6.8.1 Hamming Codes     359

    6.8.2 Extended Golay Code     361

    6.8.3 BCH Codes     363

6.9 Conclusion     367

Chapter 7  CHANNEL CODING: PART 2: CONVOLUTIONAL CODES AND REED–SOLOMON CODES     375

7.1 Convolutional Encoding     376

7.2 Convolutional Encoder Representation     378

    7.2.1 Connection Representation     378

    7.2.2 State Representation and the State Diagram     382

    7.2.3 The Tree Diagram     385

    7.2.4 The Trellis Diagram     385

7.3 Formulation of the Convolutional Decoding Problem     388

    7.3.1 Maximum Likelihood Decoding     388

    7.3.2 Channel Models: Hard Versus Soft Decisions     390

    7.3.3 The Viterbi Convolutional Decoding Algorithm     394

    7.3.4 An Example of Viterbi Convolutional Decoding     394

    7.3.5 Decoder Implementation     398

    7.3.6 Path Memory and Synchronization     401

7.4 Properties of Convolutional Codes     402

    7.4.1 Distance Properties of Convolutional Codes     402

    7.4.2 Systematic and Nonsystematic Convolutional Codes     406

    7.4.3 Catastrophic Error Propagation in Convolutional Codes     407

    7.4.4 Performance Bounds for Convolutional Codes     408

    7.4.5 Coding Gain     409

    7.4.6 Best-Known Convolutional Codes     411

    7.4.7 Convolutional Code Rate Trade-Off     413

    7.4.8 Soft-Decision Viterbi Decoding     413

7.5 Other Convolutional Decoding Algorithms     415

    7.5.1 Sequential Decoding     415

    7.5.2 Comparisons and Limitations of Viterbi and Sequential Decoding     418

    7.5.3 Feedback Decoding     419

7.6 Reed–Solomon Codes     421

    7.6.1 Reed–Solomon Error Probability     423

    7.6.2 Why R–S Codes Perform Well Against Burst Noise     426

    7.6.3 R–S Performance as a Function of Size, Redundancy, and Code Rate     426

    7.6.4 Finite Fields     429

    7.6.5 Reed–Solomon Encoding     435

    7.6.6 Reed–Solomon Decoding     439

7.7 Interleaving and Concatenated Codes     446

    7.7.1 Block Interleaving     449

    7.7.2 Convolutional Interleaving     452

    7.7.3 Concatenated Codes     453

7.8 Coding and Interleaving Applied to the Compact Disc Digital Audio System     454

    7.8.1 CIRC Encoding     456

    7.8.2 CIRC Decoding     458

    7.8.3 Interpolation and Muting     460

7.9 Conclusion     462

Chapter 8  CHANNEL CODING: PART 3: TURBO CODES AND LOW-DENSITY PARITY CHECK (LDPC) CODES     471

8.1 Turbo Codes     472

    8.1.1 Turbo Code Concepts     472

    8.1.2 Log-Likelihood Algebra     476

    8.1.3 Product Code Example     477

    8.1.4 Encoding with Recursive Systematic Codes     484

    8.1.5 A Feedback Decoder     489

    8.1.6 The MAP Algorithm     493

    8.1.7 MAP Decoding Example     499

8.2 Low-Density Parity Check (LDPC) Codes     504

    8.2.1 Background and Overview     504

    8.2.2 The Parity-Check Matrix     505

    8.2.3 Finding the Best-Performing Codes     507

    8.2.4 Decoding: An Overview     509

    8.2.5 Mathematical Foundations     514

    8.2.6 Decoding in the Probability Domain     518

    8.2.7 Decoding in the Logarithmic Domain     526

    8.2.8 Reduced-Complexity Decoders     531

    8.2.9 LDPC Performance     532

    8.2.10 Conclusion     535

Appendix 8A: The Sum of Log-Likelihood Ratios     535

Appendix 8B: Using Bayes' Theorem to Simplify the Bit Conditional Probability     537

Appendix 8C: Probability that a Binary Sequence Contains an Even Number of Ones     537

Appendix 8D: Simplified Expression for the Hyperbolic Tangent of the Natural Log of a Ratio of Binary Probabilities     538

Appendix 8E: Proof that phi(x) = phi^-1(x)     538

Appendix 8F: Bit Probability Initialization     539

Chapter 9  MODULATION AND CODING TRADE-OFFS     549

9.1 Goals of the Communication System Designer     550

9.2 Error-Probability Plane     550

9.3 Nyquist Minimum Bandwidth     552

9.4 Shannon–Hartley Capacity Theorem     554

    9.4.1 Shannon Limit     556

    9.4.2 Entropy     557

    9.4.3 Equivocation and Effective Transmission Rate     560

9.5 Bandwidth-Efficiency Plane     562

    9.5.1 Bandwidth Efficiency of MPSK and MFSK Modulation     563

    9.5.2 Analogies Between the Bandwidth-Efficiency and Error-Probability Planes     564

9.6 Modulation and Coding Trade-Offs     565

9.7 Defining, Designing, and Evaluating Digital Communication

Systems     566

    9.7.1 M-ary Signaling     567

    9.7.2 Bandwidth-Limited Systems     568

    9.7.3 Power-Limited Systems     569

    9.7.4 Requirements for MPSK and MFSK Signaling     570

    9.7.5 Bandwidth-Limited Uncoded System Example     571

    9.7.6 Power-Limited Uncoded System Example     573

    9.7.7 Bandwidth-Limited and Power-Limited Coded System Example     575

9.8 Bandwidth-Efficient Modulation     583

    9.8.1 QPSK and Offset QPSK Signaling     583

    9.8.2 Minimum-Shift Keying     587

    9.8.3 Quadrature Amplitude Modulation     591

9.9 Trellis-Coded Modulation     594

    9.9.1 The Idea Behind Trellis-Coded Modulation     595

    9.9.2 TCM Encoding     597

    9.9.3 TCM Decoding     601

    9.9.4 Other Trellis Codes     604

    9.9.5 Trellis-Coded Modulation Example     606

    9.9.6 Multidimensional Trellis-Coded Modulation     610

9.10 Conclusion     610

Chapter 10  SYNCHRONIZATION     619

10.1 Receiver Synchronization     620

    10.1.1 Why We Must Synchronize     620

    10.1.2 Alignment at the Waveform Level and Bit Stream Level     620

    10.1.3 Carrier-Wave Modulation     620

    10.1.4 Carrier Synchronization     621

    10.1.5 Symbol Synchronization     624

    10.1.6 Eye Diagrams and Constellations     625

10.2 Synchronous Demodulation     626

    10.2.1 Minimizing Energy in the Difference Signal     628

    10.2.2 Finding the Peak of the Correlation Function     629

    10.2.3 The Basic Analog Phase-Locked Loop (PLL)     631

    10.2.4 Phase-Locking Remote Oscillators     631

    10.2.5 Estimating Phase Slope (Frequency)     633

10.3 Loop Filters, Control Circuits, and Acquisition     634

    10.3.1 How Many Loop Filters Are There in a System?     634

    10.3.2 The Key Loop Filters     634

    10.3.3 Why We Want R Times R-dot     634

    10.3.4 The Phase Error S-Curve     636

10.4 Phase-Locked Loop Timing Recovery     637

    10.4.1 Recovering Carrier Timing from a Modulated Waveform     637

    10.4.2 Classical Timing Recovery Architectures     638

    10.4.3 Timing-Error Detection: Insight from the Correlation Function     641

    10.4.4 Maximum-Likelihood Timing-Error Detection     642

    10.4.5 Polyphase Matched Filter and Derivative Matched Filter     643

    10.4.6 Approximate ML Timing Recovery PLL for a 32-Path PLL     647

10.5 Frequency Recovery Using a Frequency-Locked Loop (FLL)     652

    10.5.1 Band-Edge Filters     654

    10.5.2 Band-Edge Filter Non-Data-Aided Timing Synchronization     660

10.6 Effects of Phase and Frequency Offsets     664

    10.6.1 Phase Offset and No Spinning: Effect on Constellation     665

    10.6.2 Slow Spinning Effect on Constellation     667

    10.6.3 Fast Spinning Effect on Constellation     670

10.7 Conclusion     672

Chapter 11  MULTIPLEXING AND MULTIPLE ACCESS     681

11.1 Allocation of the Communications Resource     682

    11.1.1 Frequency-Division Multiplexing/Multiple Access     683

    11.1.2 Time-Division Multiplexing/Multiple Access     688

    11.1.3 Communications Resource Channelization     691

    11.1.4 Performance Comparison of FDMA and TDMA     692

    11.1.5 Code-Division Multiple Access     695

    11.1.6 Space-Division and Polarization-Division Multiple Access     698

11.2 Multiple-Access Communications System and Architecture     700

    11.2.1 Multiple-Access Information Flow     701

    11.2.2 Demand-Assignment Multiple Access     702

11.3 Access Algorithms     702

    11.3.1 ALOHA     702

    11.3.2 Slotted ALOHA     705

    11.3.3 Reservation ALOHA     706

    11.3.4 Performance Comparison of S-ALOHA and R-ALOHA     708

    11.3.5 Polling Techniques     710

11.4 Multiple-Access Techniques Employed with INTELSAT     712

    11.4.1 Preassigned FDM/FM/FDMA or MCPC Operation     713

    11.4.2 MCPC Modes of Accessing an INTELSAT Satellite     713

    11.4.3 SPADE Operation     716

    11.4.4 TDMA in INTELSAT     721

    11.4.5 Satellite-Switched TDMA in INTELSAT     727

11.5 Multiple-Access Techniques for Local Area Networks     731

    11.5.1 Carrier-Sense Multiple-Access Networks     731

    11.5.2 Token-Ring Networks     733

    11.5.3 Performance Comparison of CSMA/CD and Token-Ring Networks     734

11.6 Conclusion     736

Chapter 12  SPREAD-SPECTRUM TECHNIQUES     741

12.1 Spread-Spectrum Overview     742

    12.1.1 The Beneficial Attributes of Spread-Spectrum Systems     742

    12.1.2 A Catalog of Spreading Techniques     746

    12.1.3 Model for Direct-Sequence Spread-Spectrum Interference Rejection     747

    12.1.4 Historical Background     748

12.2 Pseudonoise Sequences     750

    12.2.1 Randomness Properties     750

    12.2.2 Shift Register Sequences     750

    12.2.3 PN Autocorrelation Function     752

12.3 Direct-Sequence Spread-Spectrum Systems     753

    12.3.1 Example of Direct Sequencing     755

    12.3.2 Processing Gain and Performance     756

12.4 Frequency-Hopping Systems     759

    12.4.1 Frequency-Hopping Example     761

    12.4.2 Robustness     762

    12.4.3 Frequency Hopping with Diversity     762

    12.4.4 Fast Hopping Versus Slow Hopping     763

    12.4.5 FFH/MFSK Demodulator     765

    12.4.6 Processing Gain     766

12.5 Synchronization     766

    12.5.1 Acquisition     767

    12.5.2 Tracking     772

12.6 Jamming Considerations     775

    12.6.1 The Jamming Game     775

    12.6.2 Broadband Noise Jamming     780

    12.6.3 Partial-Band Noise Jamming     781

    12.6.4 Multiple-Tone Jamming     783

    12.6.5 Pulse Jamming     785

    12.6.6 Repeat-Back Jamming     787

    12.6.7 BLADES System     788

12.7 Commercial Applications     789

    12.7.1 Code-Division Multiple Access     789

    12.7.2 Multipath Channels     792

    12.7.3 The FCC Part     15 Rules for Spread-Spectrum Systems     793

    12.7.4 Direct Sequence Versus Frequency Hopping     794

12.8 Cellular Systems     796

    12.8.1 Direct-Sequence CDMA     796

    12.8.2 Analog FM Versus TDMA Versus CDMA     799

    12.8.3 Interference-Limited Versus Dimension-Limited Systems     801

    12.8.4 IS-95 CDMA Digital Cellular System     803

12.9 Conclusion     814

Chapter 13  SOURCE CODING     823

13.1 Sources     824

    13.1.1 Discrete Sources     824

    13.1.2 Waveform Sources     829

13.2 Amplitude Quantizing     830

    13.2.1 Quantizing Noise     833

    13.2.2 Uniform Quantizing     836

    13.2.3 Saturation     840

    13.2.4 Dithering     842

    13.2.5 Nonuniform Quantizing     845

13.3 Pulse Code Modulation     849

    13.3.1 Differential Pulse Code Modulation     850

    13.3.2 One-Tap Prediction     853

    13.3.3 N-Tap Prediction     854

    13.3.4 Delta Modulation     856

    13.3.5 S-D Modulation     858

    13.3.6 S-D A-to-D Converter (ADC)     862

    13.3.7 S-D D-to-A Converter (DAC)     863

13.4 Adaptive Prediction     865

    13.4.1 Forward Adaptation     865

    13.4.2 Synthesis/Analysis Coding     866

13.5 Block Coding     868

    13.5.1 Vector Quantizing     868

13.6 Transform Coding     870

    13.6.1 Quantization for Transform Coding     872

    13.6.2 Subband Coding     872

13.7 Source Coding for Digital Data     873

    13.7.1 Properties of Codes     875

    13.7.2 Huffman Code     877

    13.7.3 Run-Length Codes     880

13.8 Examples of Source Coding     884

    13.8.1 Audio Compression     884

    13.8.2 Image Compression     889

13.9 Conclusion     898

Chapter 14  FADING CHANNELS     905

14.1 The Challenge of Communicating over Fading Channels     906

14.2 Characterizing Mobile-Radio Propagation     907

    14.2.1 Large-Scale Fading     912

    14.2.2 Small-Scale Fading     914

14.3 Signal Time Spreading     918

    14.3.1 Signal Time Spreading Viewed in the Time-Delay Domain     918

    14.3.2 Signal Time Spreading Viewed in the Frequency Domain     920

    14.3.3 Examples of Flat Fading and Frequency-Selective Fading     924

14.4 Time Variance of the Channel Caused by Motion     926

    14.4.1 Time Variance Viewed in the Time Domain     926

    14.4.2 Time Variance Viewed in the Doppler-Shift Domain     929

    14.4.3 Performance over a Slow- and Flat-Fading Rayleigh Channel     935

14.5 Mitigating the Degradation Effects of Fading     937

    14.5.1 Mitigation to Combat Frequency-Selective Distortion     939

    14.5.2 Mitigation to Combat Fast-Fading Distortion     942

    14.5.3 Mitigation to Combat Loss in SNR     942

    14.5.4 Diversity Techniques     944

    14.5.5 Modulation Types for Fading Channels     946

    14.5.6 The Role of an Interleaver     947

14.6 Summary of the Key Parameters Characterizing Fading Channels     951

    14.6.1 Fast-Fading Distortion: Case 1     951

    14.6.2 Frequency-Selective Fading Distortion: Case 2     952

    14.6.3 Fast-Fading and Frequency-Selective Fading

    Distortion: Case 3     953

14.7 Applications: Mitigating the Effects of Frequency-Selective Fading     955

    14.7.1 The Viterbi Equalizer as Applied to GSM     955

    14.7.2 The Rake Receiver Applied to Direct-Sequence Spread-Spectrum (DS/SS) Systems     958

14.8 Conclusion     960

Chapter 15  THE ABCs OF OFDM (ORTHOGONAL

FREQUENCY- DIVISION MULTIPLEXING)     971

15.1 What Is OFDM?     972

15.2 Why OFDM?     972

15.3 Getting Started with OFDM     973

15.4 Our Wish List (Preference for Flat Fading and Slow Fading)     974

    15.4.1 OFDM's Most Important Contribution to Communications over Multipath Channels     975

15.5 Conventional Multi-Channel FDM versus Multi-Channel OFDM     976

15.6 The History of the Cyclic Prefix (CP)     977

    15.6.1 Examining the Lengthened Symbol in OFDM     978

    15.6.2 The Length of the CP     979

15.7 OFDM System Block Diagram     979

15.8 Zooming in on the IDFT     981

15.9 An Example of OFDM Waveform Synthesis     981

15.10 Summarizing OFDM Waveform Synthesis     983

15.11 Data Constellation Points Distributed over the Subcarrier Indexes     984

    15.11.1 Signal Processing in the OFDM Receiver     986

    15.11.2 OFDM Symbol-Time Duration     986

    15.11.3 Why DC Is Not Used as a Subcarrier in Real Systems     987

15.12 Hermitian Symmetry     987

15.13 How Many Subcarriers Are Needed?     989

15.14 The Importance of the Cyclic Prefix (CP) in OFDM     989

    15.14.1 Properties of Continuous and Discrete Fourier Transforms     990

    15.14.2 Reconstructing the OFDM Subcarriers     991

    15.14.3 A Property of the Discrete Fourier Transform (DFT)     992

    15.14.4 Using Circular Convolution for Reconstructing an OFDM Subcarrier     993

    15.14.5 The Trick That Makes Linear Convolution Appear

    Circular     994

15.15 An Early OFDM Application: Wi-Fi Standard 802.11a     997

    15.15.1 Why the Transform Size N Needs to Be Larger Than the Number of Subcarriers     999

15.16 Cyclic Prefix (CP) and Tone Spacing     1000

15.17 Long-Term Evolution (LTE) Use of OFDM     1001

    15.17.1 LTE Resources: Grid, Block, and Element     1002

    15.17.2 OFDM Frame in LTE     1003

15.18 Drawbacks of OFDM     1006

    15.18.1 Sensitivity to Doppler     1006

    15.18.2 Peak-to-Average Power Ratio (PAPR) and SC-OFDM     1006

    15.18.3 Motivation for Reducing PAPR     1007

15.19 Single-Carrier OFDM (SC-OFDM) for Improved PAPR Over Standard OFDM     1007

    15.19.1 SC-OFDM Signals Have Short Mainlobe Durations     1010

    15.19.2 Is There an Easier Way to Implement SC-OFDM?     1011

15.20 Conclusion     1012

Chapter 16  THE MAGIC OF MIMO (MULTIPLE INPUT/MULTIPLE OUTPUT)     1017

16.1 What is MIMO?     1018

    16.1.1 MIMO Historical Perspective     1019

    16.1.2 Vectors and Phasors     1019

    16.1.3 MIMO Channel Model     1020

16.2 Various Benefits of Multiple Antennas     1023

    16.2.1 Array Gain     1023

    16.2.2 Diversity Gain     1023

    16.2.3 SIMO Receive Diversity Example     1026

    16.2.4 MISO Transmit Diversity Example     1027

    16.2.5 Two-Time Interval MISO Diversity Example     1028

    16.2.6 Coding Gain     1029

    16.2.7 Visualization of Array Gain, Diversity Gain, and Coding Gain     1029

16.3 Spatial Multiplexing     1031

    16.3.1 Basic Idea of MIMO-Spatial Multiplexing (MIMO-SM)     1031

    16.3.2 Analogy Between MIMO-SM and CDMA     1033

    16.3.3 When Only the Receiver Has Channel-State Information (CSI)     1033

    16.3.4 Impact of the Channel Model     1034

    16.3.5 MIMO and OFDM Form a Natural Coupling     1036

16.4 Capacity Performance     1037

    16.4.1 Deterministic Channel Modeling     1038

    16.4.2 Random Channel Models     1040

16.5 Transmitter Channel-State Information (CSI)     1042

    16.5.1 Optimum Power Distribution     1044

16.6 Space-Time Coding     1047

    16.6.1 Block Codes in MIMO Systems     1047

    16.6.2 Trellis Codes in MIMO Systems     1050

16.7 MIMO Trade-Offs     1051

    16.7.1 Fundamental Trade-Off     1051

    16.7.2 Trade-Off Yielding Greater Robustness for PAM and QAM     1052

    16.7.3 Trade-Off Yielding Greater Capacity for PAM and QAM     1053

    16.7.4 Tools for Trading Off Multiplexing Gain and Diversity Gain     1054

16.8 Multi-User MIMO (MU-MIMO)     1058

    16.8.1 What Is MU-MIMO?     1059

    16.8.2 SU-MIMO and MU-MIMO Notation     1059

    16.8.3 A Real Shift in MIMO Thinking     1061

    16.8.4 MU-MIMO Capacity     1067

    16.8.5 Sum-Rate Capacity Comparison for Various Precoding Strategies     1081

    16.8.6 MU-MIMO Versus SU-MIMO Performance     1082

16.9 Conclusion     1083

Index     1089


ONLINE ONLY:

Chapter 17  Encryption and Decryption

Appendix A  A Review of Fourier Techniques

Appendix B  Fundamentals of Statistical Decision Theory

Appendix C  Response of a Correlator to White Noise

Appendix D  Often-Used Identities

Appendix E  S-Domain, Z-Domain, and Digital Filtering

Appendix F  OFDM Symbol Formation with an N-Point Inverse Discrete Fourier Transform (IDFT)

Appendix G  List of Symbols

Dr. Bernard Sklar has over 40 years of experience in technical design and management positions at Republic Aviation, Hughes Aircraft, Litton Industries, and The Aerospace Corporation, where he helped develop the MILSTAR satellite system. He is now head of advanced systems at Communications Engineering Services, a consulting company he founded in 1984. He has taught engineering courses at several universities, including UCLA and USC, and has trained professional engineers worldwide.

Dr. Fredric J. Harris is a professor of electrical engineering and the CUBIC signal processing chair at San Diego State University and an internationally renowned expert on DSP and communication systems. He is also the co-inventor of the Blackman–Harris filter. He has extensively published many technical papers, the most famous being the seminal 1978 paper “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform.” He is also the author of the textbook Multi-Rate Signal Processing for Communication Systems and the source coding chapter in the previous edition of this book.

Need help? Get in touch

Pearson+

All in one place. Pearson+ offers instant access to eTextbooks, videos and study tools in one intuitive interface. Students choose how they learn best with enhanced search, audio and flashcards. The Pearson+ app lets them read where life takes them, no wi-fi needed. Students can access Pearson+ through a subscription or their MyLab or Mastering course.

uCertify

The Pearson uCertify Courses and Labs combine Pearson's authorized and peer-reviewed content with uCertify's accessible, flexible, and scalable online learning platform. All Courses and Labs are mapped directly to Pearson texts to make integration into your current courses easy and convenient

The uCertify Courses are a foundational learning tool and come with the complete Pearson interactive e-text, pre- and post- assessments, quizzes, exercises, tests, instructional videos, and more. The uCertify Labs and Simulators provide hands-on skills and bridge the gap between conceptual knowledge and real-world application

Video
Play
Privacy and cookies
By watching, you agree Pearson can share your viewership data for marketing and analytics for one year, revocable upon changing cookie preferences. Disabling cookies may affect video functionality. More info...

Pearson eTextbook: What’s on the inside just might surprise you

They say you can’t judge a book by its cover. It’s the same with your students. Meet each one right where they are with an engaging, interactive, personalized learning experience that goes beyond the textbook to fit any schedule, any budget, and any lifestyle.