Feedback Control Systems, 5th edition
Published by Pearson (November 24, 2010) © 2011
- Charles L. Phillips (Emeritus) Auburn University
- John Parr
- Hardcover, paperback or looseleaf edition
- Affordable rental option for select titles
For junior/senior-level Control Theory courses in Electrical, Mechanical, and Aerospace Engineering.
¿
For a First Course in Control Systems.
¿
Feedback Control Systems, 5e offers a thorough analysis of the principles of classical and modern feedback control in language that can be understood by students and practicing engineers with no prior background in the subject matter. Organized into three sections — analog control systems, digital control systems, and nonlinear analog control systems —this text helps students understand the difference between mathematical models and the physical systems that the models represent.
¿
The Fifth edition provides a new introduction to modern control analysis and design for digital systems, the addition of emulation methods of design for digital control, and numerous other updates.
¿
New introduction to modern control analysis and design for digital systems. (Chapter 14)
Addition of emulation methods of design for digital control. (Chapter 13)
Additional system modeling example added, providing additional exposure to practical problems in developing mathematical models for physical system. (Chapter 2)
New Appendix E features answers to selected problems. Appendix E contains answers (not solutions) to selected end-of-chapter problems, providing students with immediate feedback on their work. End-of-chapter problems are arranged into sets that correspond to sections within the chapter; Appendix E features answers to at least one problem in each set.
Written with introductory students in mind. The authors have written this text for students and practicing engineers who are studying control systems for the first time. They provide many examples of system analysis and controller design that focus on one key concept to give readers the chance to absorb the material without being overwhelmed by unnecessary complexity. The end-of-chapter problems have been developed with the same philosophy.
Maximum text and course flexibility. More advanced material appears toward the end of each chapter, and topics can be easily omitted, enabling instructors to tailor the book to meet their course needs.
The SIMULINK simulation program illustrates feedback effects, which aids in student comprehension by helping to demonstrate design examples and problems.
Â
Computer verification of results exposes students to a short MATLAB program when working almost all examples and problems.Â
Design procedures implemented in MATLAB m-files.
Practical application examples allow students to better relate the mathematical developments to physical systems.Â
Chapter-end problems lead students through a second method of the solution so they can verify results.Â
Transfer-function and state-variable models familiarize students with both models for the analysis and design of linear analog systems.Â
System stability discussion included, along with the Routh-Hurwitz stability criterion.
Coverage of nonlinear system analysis methods emphasizes describing-function analysis, linearization, and the state-plane analysis.Â
Early coverage of expanded frequency-response design criteria helps explain closed-loop systems to students.Â
Digital Control Systems provide students with the basic principles of digital control.Â
The Time-scaling differential equations section prepares students to relate the transfer functions of systems examples to those of practical problems.
- More than 70% of the end-of-chapter problem sets are new or revised
- Additional examples
- Additional explanation of some concepts and procedures
- More extensive use of MATLAB in examples and problem sets.
- Companion Website contains M-files
- A new Appendix that introduces control system applications of MATLAB.
- A new Appendix with answers for selected end-of-chapter problems.
- The end-of-chapter problems are grouped into sets so that each set corresponds to a section of the chapter. In each set at least one problem has its answer provided in Appendix E. Other problems in the set are based on the same concepts as the one with its answer given. This can provide immediate feedback to students in cases where the problems do not provide a second method of verification.
- A new chapter (14) on Discrete -Time Pole-Assignment and State Estimation has been added.
1Â Â Â INTRODUCTION
1.1Â The Control ProblemÂ
1.2Â Examples of Control Systems
1.3 Short History of Control Â
ReferencesÂ
Â
2Â Â Â MODELS OF PHYSICAL SYSTEMSÂ Â
2.1 System Modeling  Â
2.2 Electrical Circuits  Â
2.3 Block Diagrams and Signal Flow Graphs Â
2.4 MasonÃs Gain Formula  Â
2.5 Mechanical Translational Systems Â
2.6 Mechanical Rotational Systems Â
2.7 Electromechanical Systems Â
2.8 Sensors Â
2.9 Temperature-control System Â
2.10 Analogous Systems Â
2.11 Transformers and Gears Â
2.12 Robotic Control System  Â
2.13 System Identification  Â
2.14 Linearization  Â
2.15 Summary Â
References Â
Problems
Â
3Â Â Â STATE-VARIABLE MODELSÂ Â
3.1 State-Variable Modeling Â
3.2 Simulation Diagrams Â
3.3 Solution of State Equations Â
3.4 Transfer Functions Â
3.5 Similarity Transformations Â
3.6 Digital Simulation  Â
3.7 Controls Software  Â
3.8 Analog Simulation  Â
3.9 Summary  Â
References  Â
Problems  Â
Â
4Â Â Â SYSTEM RESPONSESÂ Â
4.1 Time Response of First-Order Systems  Â
4.2 Time Response of Second-order Systems  Â
4.3 Time Response Specifications in Design  Â
4.4 Frequency Response of Systems  Â
4.5 Time and Frequency Scaling  Â
4.6 Response of Higher-order Systems  Â
4.7 Reduced-order Models  Â
4.8 Summary  Â
References  Â
Problems  Â
Â
5Â Â Â CONTROL SYSTEM CHARACTERISTICSÂ Â Â
5.1 Closed-loop Control System  Â
5.2 Stability  Â
5.3 Sensitivity  Â
5.4 Disturbance Rejection  Â
5.5 Steady-state Accuracy  Â
5.6 Transient Response  Â
5.7 Closed-loop Frequency Response Â
5.8 Summary  Â
References Â
Problems  Â
Â
6Â Â Â STABILITY ANALYSIS
6.1 Routh-Hurwitz Stability Criterion  Â
6.2 Roots of the Characteristic Equation  Â
6.3 Stability by Simulation  Â
6.4 Summary Â
Problems Â
Â
7Â Â Â ROOT-LOCUS ANALYSIS AND DESIGNÂ Â Â
7.1 Root-Locus Principles Â
7.2 Some Root-Locus Techniques Â
7.3 Additional Root-Locus Techniques Â
7.4 Additional Properties of the Root Locus  Â
7.5 Other Configurations Â
7.6 Root-Locus Design  Â
7.7 Phase-lead Design  Â
7.8 Analytical Phase-Lead Design  Â
7.9 Phase-Lag Design  Â
7.10 PID Design  Â
7.11 Analytical PID Design  Â
7.12 Complementary Root Locus Â
7.13 Compensator Realization  Â
7.14 Summary Â
References Â
ProblemsÂ
Â
8Â Â Â FREQUENCY-RESPONSE ANALYSISÂ
8.1 Frequency Responses Â
8.2 Bode Diagrams Â
8.3 Additional Terms Â
8.4 Nyquist Criterion  Â
8.5 Application of the Nyquist Criterion  Â
8.6 Relative Stability and the Bode Diagram Â
8.7 Closed-Loop Frequency Response Â
8.8 Summary Â
References Â
ProblemsÂ
Â
9Â Â Â FREQUENCY-RESPONSE DESIGNÂ Â Â
9.1 Control System Specifications Â
9.2 Compensation  Â
9.3 Gain Compensation  Â
9.4 Phase-Lag Compensation  Â
9.5 Phase-Lead Compensation  Â
9.6 Analytical Design Â
9.7 Lag-Lead Compensation Â
9.8 PID Controller Design  Â
9.9 Analytical PID Controller Design  Â
9.10 PID Controller Implementation  Â
9.11 Frequency-Response Software Â
9.12 Summary Â
References Â
ProblemsÂ
Â
10Â Â MODERN CONTROL DESIGNÂ Â
10.1 Pole-Placement Design Â
10.2 AckermannÃs Formula Â
10.3 State Estimation Â
10.4 Closed-Loop System Characteristics Â
10.5 Reduced-Order Estimators Â
10.6 Controllability and Observability Â
10.7 Systems with Inputs Â
10.8 Summary Â
References Â
Problems Â
Â
11Â Â DISCRETE-TIME SYSTEMSÂ Â
11.1 Discrete-Time System Â
11.2 Transform Methods Â
11.3 Theorems of the z-Transform Â
11.4 Solution of Difference Equations Â
11.5 Inverse z-Transform Â
11.6 Simulation Diagrams and Flow GraphsÂ
11.7 State Variables Â
11.8 Solution of State Equations Â
11.9 Summary Â
References Â
ProblemsÂ
Â
12Â Â SAMPLED-DATA SYSTEMSÂ Â Â
12.1 Sampled Data Â
12.2 Ideal Sampler Â
12.3 Properties of the Starred Transform Â
12.4 Data Reconstruction Â
12.5 Pulse Transfer Function Â
12.6 Open-Loop Systems Containing Digital Filters Â
12.7 Closed-Loop Discrete-Time Systems Â
12.8 Transfer Functions for Closed-Loop Systems Â
12.9 State Variables for Sampled-Data Systems Â
12.10    Summary Â
References Â
Problems Â
Â
13Â Â ANALYSIS AND DESIGN OF DIGITAL CONTROL SYSTEMSÂ
13.1 Two Examples
13.2 Discrete System StabilityÂ
13.3 JuryÃs Test Â
13.4 Mapping the s-Plane into the z-Plane
13.5 Root Locus  Â
13.6 Nyquist Criterion  Â
13.7 Bilinear Transformation  Â
13.8 RouthñHurwitz Criterion  Â
13.9 Bode Diagram  Â
13.10Â Â Â Â Steady-State AccuracyÂ
13.11Â Â Â Â Design of Digital Control SystemsÂ
13.12    Phase-Lag Design Â
13.13Â Â Â Â Phase-Lead DesignÂ
13.14Â Â Â Â Digital PID ControllersÂ
13.15Â Â Â Â Root-Locus DesignÂ
13.16    Summary Â
References Â
Problems Â
Â
14 DISCRETE-TIME POLE-ASSIGNMENT AND STATE ESTIMATION
14.1 Introduction
14.2 Pole Assignment
14.3 State Estimtion
14.4 Reduced-Order Observers
14.5 Current Observers
14.6 Controllability and Observability
14.7 Systems and Inputs
14.8 Summary
    References
    Problems
Â
Â
15Â Â NONLINEAR SYSTEM ANALYSISÂ Â Â
15.1 Nonlinear System Definitions and Properties Â
15.2 Review of the Nyquist Criterion  Â
15.3 Describing Function  Â
15.4 Derivations of Describing Functions Â
15.5 Use of the Describing Function  Â
15.6 Stability of Limit Cycles Â
15.7 Design  Â
15.8 Application to Other Systems Â
15.9 Linearization Â
15.10    Equilibrium States and Lyapunov Stability Â
15.11    State Plane Analysis Â
15.12    Linear-System Response Â
15.13    Summary Â
Â
References Â
ProblemsÂ
APPENDICESÂ Â Â
Â
AÂ Â Â MatricesÂ
BÂ Â Â Laplace TransformÂ
CÂ Â Â Laplace Transform and z-Transform TablesÂ
DÂ Â Â MATLAB Commands Used in This Text
EÂ Â Â Answers to Selected Problems
Â
INDEXÂ Â Â Â
Need help? Get in touch
![Video](https://img.youtube.com/vi/TCIok0KnHDc/hqdefault.jpg)
Pearson eTextbook: What’s on the inside just might surprise you
They say you can’t judge a book by its cover. It’s the same with your students. Meet each one right where they are with an engaging, interactive, personalized learning experience that goes beyond the textbook to fit any schedule, any budget, and any lifestyle.Â
![](https://www.pearson.com/content/dam/global-store/global/plp-pdp/1600x800-GettyImages-1172587378.jpg)
Digital Learning NOW
Extend your professional development and meet your students where they are with free weekly Digital Learning NOW webinars. Attend live, watch on-demand, or listen at your leisure to expand your teaching strategies. Earn digital professional development badges for attending a live session.