Structural Analysis, 10th edition

Published by Pearson (July 28, 2017) © 2018

  • Russell C. Hibbeler

eTextbook

$64.52

  • Easy-to-use search and navigation
  • Add notes and highlights
  • Flashcards help streamline study sessions
from$165.32

  • Hardcover, paperback or looseleaf edition
  • Affordable rental option for select titles
  • Free shipping on looseleafs and traditional textbooks

Mastering

from$129.99

  • Activate learning for future scientists
  • Tailor your course to fit your needs
  • Support students with guided practice

For courses in Structural Analysis and for individuals planning a career as a structural engineer.

Applies theory to structural modeling and analysis

Structural Analysis presents the theory and applications of structural analysis as applied to trusses, beams and frames. Through its student-friendly and clear organization, it encourages the ability to model and analyze a structure in preparation for professional practice.

The 10th Edition features 30% new problems and an expanded discussion of structural modeling, particularly the importance of modeling a structure so it can be used in computer analysis. Newly added material includes an update to the ASCE/SEI 2106 specifications, a discussion of catenary cables and more.

Hallmark features of this title

  • The organization and approach of the text presents a structured method for introducing each new definition or concept, making it a convenient resource for later reference and review.
    • Each chapter is organized into well-defined sections that contain an explanation of specific topics, illustrative example problems and more.
  • Procedures for Analysis is a unique feature that provides students with a logical and systematic method for applying theory and building problem-solving skills.
    • The example problems are solved using this outlined method in order to clarify the steps needed for solution.
  • Photographs throughout demonstrate how principles of structural analysis apply to real-world situations and help students visualize difficult concepts.

New and updated features of this title

  • NEW: Structural modeling is discussed throughout, especially as it applies to modeling a structure for a computer analysis.
  • NEW: Material has been added throughout, including an update to ASCE/SEI 2106 specifications, a discussion of catenary cables, and further clarification for drawing moment and deflection diagrams for beams and frames.
  • NEW: Preliminary problems offer simple applications of concepts and help students develop problem-solving skills before attempting to solve any of the standard problems that follow.
  • UPDATED: 30% new problems are designed to test students' ability to apply theory to realistic practical situations. Throughout the book there is a balance between problems using either SI or FPS units.
  • UPDATED: Rewritten text material clarifies and expands upon concepts throughout the book.
  • UPDATED: Illustrations throughout the text include newly added 2-color art, as well as photorealistic illustrations representing the 3-D nature of structural engineering.

1 Types of Structures and Loads

1.1 Introduction

1.2 Classification of Structures

1.3 Loads

1.4 Structural Design Problems

Chapter Review

 

2 Analysis of Statically Determinate Structures

2.1 Idealized Structure

2.2 Load Path

2.3 Principle of Superposition

2.4 Equations of Equilibrium

2.5 Determinacy and Stability

2.6 Application of the Equations of Equilibrium

Fundamental Problems

Problems

Project Problem

Chapter Review

 

3 Analysis of Statically Determinate Trusses

3.1 Common Types of Trusses

3.2 Classification of Coplanar Trusses

3.3 The Method of Joints

3.4 Zero-Force Members

3.5 The Method of Sections

3.6 Compound Trusses

3.7 Complex Trusses

3.8 Space Trusses

Fundamental Problems

Problems

Project Problem

Chapter Review

 

4 Internal Loadings Developed in Structural Members

4.1 Internal Loadings at a Specified Point

4.2 Shear and Moment Functions

4.3 Shear and Moment Diagrams for a Beam

4.4 Shear and Moment Diagrams for a Frame

4.5 Moment Diagrams Constructed by the Method of Superposition

Preliminary Problems

Fundamental Problems

Problems

Project Problems

Chapter Review

 

5 Cables and Arches

5.1 Cables

5.2 Cable Subjected to Concentrated Loads

5.3 Cable Subjected to a Uniform Distributed Load

5.4 Arches

5.5 Three-Hinged Arch

Problems

Chapter Review

 

6 Influence Lines for Statically Determinate Structures

6.1 Influence Lines

6.2 Influence Lines for Beams

6.3 Qualitative Influence Lines

6.4 Influence Lines for Floor Girders

6.5 Influence Lines for Trusses

6.6 Maximum Influence at a Point due to a Series of Concentrated Loads

6.7 Absolute Maximum Shear and Moment

Fundamental Problems

Problems

Project Problem

Chapter Review

 

7 Deflections

7.1 Deflection Diagrams and the Elastic Curve

7.2 Elastic-Beam Theory

7.3 The Double Integration Method

7.4 Moment-Area Theorems

7.5 Conjugate-Beam Method

Preliminary Problems

Fundamental Problems

Problems

Chapter Review

 

8 Deflections Using Energy Methods

8.1 External Work and Strain energy

8.2 Principle of Work and energy

8.3 Principle of Virtual Work

8.4 Method of Virtual Work: Trusses

8.5 Castigliano’s Theorem

8.6 Castigliano’s Theorem for Trusses

8.7 Method of Virtual Work: Beams and Frames

8.8 Virtual Strain Energy Caused by Axial Load, Shear, Torsion, and Temperature

8.9 Castigliano’s Theorem for Beams and Frames

Fundamental Problems

Problems

Chapter Review

 

9 Analysis of Statically Indeterminate Structures by the Force Method

9.1 Statically Indeterminate Structures

9.2 Force Method of Analysis:  General Procedure

9.3 Maxwell’s Theorem of Reciprocal Displacements

9.4 Force Method of Analysis: Beams

9.5 Force Method of Analysis: Frames

9.6 Force Method of Analysis: Trusses

9.7 Composite Structures

9.8 Symmetric Structures

9.9 Influence Lines for Statically Indeterminate Beams

9.10 Qualitative Influence Lines for Frames

Fundamental Problems

Problems

Chapter Review

 

10 Displacement Method of Analysis:  Slope-Deflection Equations

10.1 Displacement Method of Analysis:  General Procedures

10.2 Slope-Deflection equations

10.3 Analysis of Beams

10.4 Analysis of Frames: No Sidesway

10.5 Analysis of Frames: Sidesway

Problems

Project Problem

Chapter Review

 

11 Displacement Method of Analysis: Moment Distribution

11.1 General Principles and Definitions

11.2 Moment Distribution for Beams

11.3 Stiffness-Factor Modifications

11.4 Moment Distribution for Frames: No Sidesway

11.5 Moment Distribution for Frames: Sidesway

Problems

Chapter Review

 

12 Approximate Analysis of Statically Indeterminate Structures

12.1 Use of Approximate Methods

12.2 Trusses

12.3 Vertical Loads on Building Frames

12.4 Portal Frames and Trusses

12.5 Lateral Loads on Building Frames: Portal Method

12.6 Lateral Loads on Building Frames:  Cantilever Method

Problems

Chapter Review

 

13 Beams and Frames Having Nonprismatic Members

13.1 Introduction

13.2 Loading Properties of Nonprismatic Members

13.3 Moment Distribution for Structures Having Nonprismatic Members

13.4 Slope-Deflection Equations for Nonprismatic Members

Problems

Chapter Review

 

14 Truss Analysis Using the Stiffness Method

14.1 Fundamentals of the Stiffness Method

14.2 Member Stiffness Matrix

14.3 Displacement and Force Transformation Matrices

14.4 Member Global Stiffness Matrix

14.5 Truss Stiffness Matrix

14.6 Application of the Stiffness Method for Truss Analysis

14.7 Nodal Coordinates

14.8 Trusses Having Thermal Changes and Fabrication errors

14.9 Space-Truss Analysis

Problems

Chapter Review

 

15 Beam Analysis Using the Stiffness Method

15.1 Preliminary Remarks

15.2 Beam-Member Stiffness Matrix

15.3 Beam-Structure Stiffness Matrix

15.4 Application of the Stiffness Method for Beam Analysis

Problems

 

16 Plane Frame Analysis Using the Stiffness Method

16.1 Frame-Member Stiffness Matrix

16.2 Displacement and Force Transformation Matrices

16.3 Frame-Member Global Stiffness Matrix

16.4 Application of the Stiffness Method for Frame Analysis

Problems

 

17 Structural Modeling and Computer Analysis

17.1 General Structural Modeling

17.2 Modeling a Structure and its Members

17.3 General Application of a Structural Analysis Computer Program

Computer Problems

Project Problems

 

Appendix

A. Matrix Algebra for Structural Analysis

Preliminary Problems and Fundamental Problems Solutions

Answers to Selected Problems

Index

 

About our author

R.C. Hibbeler graduated from the University of Illinois at Urbana - Champaign with a BS in Civil Engineering (majoring in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University. Professor Hibbeler's professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural and stress analysis work at Chicago Bridge and Iron along with Sargent and Lundy in Chicago. He has practiced engineering in Ohio, New York and Louisiana.

Professor Hibbeler currently teaches both civil and mechanical engineering courses at the University of Louisiana - Lafayette. In the past, he has taught at the University of Illinois at Urbana - Champaign, Youngstown State University, Illinois Institute of Technology, and Union College.

Need help? Get in touch

Pearson eTextbook

Extend learning beyond the classroom. Pearson eTextbook is an easy-to-use digital textbook. It lets students customize how they study and learn with enhanced search and the ability to create flashcards, highlight and add notes all in one place. The Pearson+ app lets students read wherever life takes them, offline or online.

Mastering

Engage science and engineering students. Mastering® is a flexible platform that supports the way science students learn best: through active, immersive experiences. With tutorials, real-time analytics, and hints and feedback, you can replicate an office-hours visit and prepare learners for the challenges of today and tomorrow.

Video
Play
Privacy and cookies
By watching, you agree Pearson can share your viewership data for marketing and analytics for one year, revocable by deleting your cookies.

Build confidence and help every learner achieve more

With Mastering®, you can use your experiences to combine interactive resources and real-world examples, helping students master challenging material, and gain the confidence they need to succeed — both in and out of the classroom.