Introduction to Materials Science and Engineering: A Guided Inquiry, 1st edition

Published by Pearson (July 1, 2022) © 2023

  • Elliot P. Douglas University of Florida

eTextbook on Pearson+

ISBN-13: 9780137981809 (2022 update)

eTextbook rental includes

  • Instant access to eTextbook
  • Search, highlight, and notes
  • Create flashcards
Products list

Details

  • A print text
Products list

Access details

  • Pearson+ eTextbook with study tools
  • Instant access once purchased
  • Register with a Course ID, a link from your instructor or an LMS link (Blackboardâ„¢, Canvasâ„¢, Moodle or D2L®)

Features

  • Interactive digital learning experience
  • Help when and where you need it
  • Instant feedback on assignments
  • Study tools

For the Introductory Materials Science course.¿Learn about Guided Inquiry Implementation in Materials Science here: http://www.pearsonhighered.com/douglas1einfo

¿

This unique textbook is designed to serve as an active learning tool that uses carefully selected information and guided inquiry questions. Guided inquiry helps students reach true understanding of concepts as they develop greater ownership over the material presented. First, background information or data is presented. Then, concept invention questions lead the students to construct their own understanding of the fundamental concepts represented. Finally, application questions provide the students with practice in solving problems using the concepts that they have derived from their own valid conclusions.¿

Preface

Part I: Introduction

Chapter 1: What is Guided Inquiry?

1.1 First Law of Thermodynamics

1.2 Active Learning

Chapter 2: What is Materials Science and Engineering?

2.1 Types of Materials

2.2 The MSE Triangle

Part II: Atomic and Molecular Structure of Materials

Chapter 3: Bonding

3.1 Electronegativity

3.2 Primary Bonds

3.3 Non-Bonding Interactions

Chapter 4: Atomic Arrangements in Solids

4.1 Crystalline and Amorphous Materials

4.2 Unit Cells

4.3 Miller Indices

4.4 Planes and Directions in Crystals

4.5 Crystalline Defects

4.6 Ceramic Crystal Structures

4.7 Defects in Ceramic Crystals

4.8 Determining Crystal Structure: Diffraction

Chapter 5: The Structure of Polymers

5.1 Molecular Structure

5.2 Molecular Weight

5.3 Polymer Crystals

5.4 The Glass Transition

Chapter 6: Microstructure: Phase Diagrams

6.1 Defining Mixtures

6.2 Isomorphous Binary Phase Diagrams – The Lever Rule

6.3 Isomorphous Binary Phase Diagrams – Microstructure

6.4 Eutectic Phase Diagrams – Microstructure

6.5 Eutectic Phase Diagrams – Microconstituents

6.6 Peritectic Phase Diagrams

6.7 Intermetallic and Ceramic Phase Diagrams 

Chapter 7: Diffusion

7.1 Diffusion Mechanisms

7.2 Diffusion Calculations: Fick’s Laws

Chapter 8: Microstructure: Kinetics

8.1 Nucleation and Growth

8.2 Heterogeneous Nucleation

8.3 Equilibrium vs. Nonequilibrium Cooling

8.4 Isothermal Transformation Diagrams

8.5 Continuous Cooling Transformation Diagrams

Part III: Properties and Uses of Materials

Chapter 9: Mechanical Behavior

9.1 Stress-Strain Curves

9.2 Bond-Force and Bond-Energy Curves

9.3 Strength of Metals

9.4 Strengthening Mechanisms for Metals

9.5 Structure-Property-Processing Relationships in Steel

9.6 Polymer Properties

9.7 Properties of Ceramics

9.8 Fracture

9.9 Fatigue

9.10 Hardness

9.11 Viscoelasticity

9.12 Composites

Chapter 10: Materials in the Environment

10.1 Electrochemistry: How Does a Battery Work?

10.2 Corrosion of Metals

10.3 Oxide Formation

10.4 Degradation of Polymers

Chapter 11: Electronic Behavior

11.1 Band Structure of Materials

11.2 Electronic Properties

11.3 Conductors

11.4 Semiconductors

11.5 Solid-State Devices

Chapter 12: Thermal Behavior

12.1 Heat Capacity

12.2 Thermal Expansion

12.3 Thermal Conductivity

Chapter 13: Materials Selection and Design

13.1 Ranking Procedures

13.2 Ashby Plots

Need help? Get in touch