Modern Control Engineering, 5th edition

Published by Pearson (July 14, 2021) © 2010

  • Katsuhiko Ogata
Products list

eTextbook features

  • Instant access to eTextbook
  • Search, highlight, and notes
  • Create flashcards
Products list

Details

  • A print text

For senior or graduate-level students taking a first course in Control Theory (in departments of Mechanical, Electrical, Aerospace, and Chemical Engineering).

A comprehensive, senior-level textbook for control engineering.

Ogata’s Modern Control Engineering, 5/e, offers the comprehensive coverage of continuous-time control systems that all senior students must have, including frequency response approach, root-locus approach, and state-space approach to analysis and design of control systems. The text provides a gradual development of control theory, shows how to solve all computational problems with MATLAB, and avoids highly mathematical arguments. A wealth of examples and worked problems are featured throughout the text.

The new edition includes improved coverage of Root-Locus Analysis (Chapter 6) and Frequency-Response Analysis (Chapter 8). The author has also updated and revised many of the worked examples and end-of-chapter problems.

Contents

  • Preface
  • Chapter 1 Introduction to Control Systems
    • 1–1 Introduction
    • 1–2 Examples of Control Systems
    • 1–3 Closed-Loop Control versus Open-Loop Control
    • 1–4 Outline of the Book
  • Chapter 2 Mathematical Modeling of Control Systems
    • 2–1 Introduction
    • 2–2 Transfer Function and impulse Response Function
    • 2–3 Atomatic Control Systems
    • 2–4 Modeling in state space
    • 2–5 State-Space Representation of Scalar Differential Equation System
    • 2–6 Transformation of Mathematical models with MATLAB
    • 2–7 Linearization of Nonlinear Mathematical Models
    • Example Problems and Solutions Problems
  • Chapter 3 Mathematical Modeling of Mechanical Systems and Electrical Systems
    • 3–1 Introduction
    • 3–2 Mathematical Modeling of Mechanical Systems
    • 3–3 Mathematical Modeling of Electrical Systems
    • Example Problems and Solutions Problems
  • Chapter 4 Mathematical Modeling of Fluid Systems and Thermal Systems
    • 4–1 Introduction
    • 4–2 Liquid-Level Systems
    • 4–3 Pneumatic Systems
    • 4–4 Hydraulic Systems
    • 4–5 Thermal Systems
    • Example Problems and Solutions Problems
  • Chapter 5 Transient and Steady-State Response Analyses
    • 5–1 Introduction
    • 5–2 First-Order Systems
    • 5–3 Second-Order Systems
    • 5–4 Higher Order Systems
    • 5–5 Transient-Response Analysis with MATLAB
    • 5–6 Routh's Stability Criterion
    • 5–7 Effects of Integral and Derivative Control Actions on System Performance
    • 5–8 Steady-State Errors in Unity-Feedback Control Systems
    • Example Problems and Solutions Problems
  • Chapter 6 Control Systems Analysis and design by the Root-Locus Method
    • 6–1 Introduction
    • 6–2 Root-Locus Plots
    • 6–3 plotting Root Loci with MATLAB
    • 6–4 Root-Locus Plots of Positive Feedback Systems
    • 6–5 Root-Locus Approach to control Systems Design
    • 6–6 Lead Compensation
    • 6–7 Lag Compensation
    • 6–8 Lag-Lead Compensation
    • Example Problems and Solutions Problems
  • Chapter 7 Control Systems Analysis and Design by the Frequency Response Method
    • 7–1 Introduction
    • 7–2 Bode Digrams
    • 7–3 Polar Plots
    • 7–4 Log-Magnitude-versus-Phase plots
    • 7–5 Nyquist Stability Criterion
    • 7–6 Stability Analysis
    • 7–7 Relative Stability Analysis
    • 7–8 Closed-Loop Frequency Response of Unity-feedback Systems
    • 7–9 Experimental Determination of Transfer functions
    • 7–10 Control Systems design by Frequency Response Approach
    • 7–11 Lead Compensation
    • 7–12 Lag Compensation
    • 7–13 Lag-Lead Compensation
    • Example Problems and Solutions Problems
  • Chapter 8 PID Controllers and Modified PID Controllers
    • 8–1 Introduction
    • 8–2 Ziegler- Nichols Rules for tuning PID controllers
    • 8–3 Design of PID Controllers with Frequency Response Approach
    • 8–4 Design of PID Controllers with Computational Optimization Approach
    • 8–5 Modification of PID Control Schemes
    • 8–6 Two-Degrees-of-freedom PID Control Schemes
    • 8–7 Zero Placement Approach to Improve Response
    • Example Problems and Solutions Problems
  • Chapter 9 Control Systems Analysis in State Space
    • 9–1 Introduction
    • 9–2 State-space Representations of Transfer-Function Systems
    • 9–3 Transformation of System Models with MATLAB
    • 9–4 Solving the Time-Invariant State Equation
    • 9–5 Some Useful Results in vector-Matrix Analysis
    • 9–6 Controllability
    • 9–7 Observability
    • Example Problems and Solutions Problems
  • Chapter 10 Control Systems Design of in State Space
    • 10–1 Introduction
    • 10–2 Pole Placement
    • 10–3 Solving Pole-Placement Problems with MATLAB
    • 10–4 Design of Servo Systems
    • 10–5 State Observers
    • 10–6 Design of Regulator Systems with Observers
    • 10–7 Design of Control Systems with Observers
    • 10–8 Quadratic Optimal Regulator Systems
    • 10–9 Robust Control Solutions
    • Example Problems and Solutions Problems

Appendix A

Appendix B

Appendix C

References

Index

This publication contains markup to enable structural navigation and compatibility with assistive technologies. Images in the publication MAY NOT be fully described, which is a barrier to those who rely on alternative text descriptions. The publication supports text reflow and contains no content hazards known to cause adverse physical reactions.

Need help? Get in touch