Pearson+

Basic Chemistry, 6th edition

  • Karen C. Timberlake
  • , William Timberlake
loading

  • Study simpler and faster
    Study simpler and faster

    Use flashcards and other study tools in your eTextbook

  • Listen on the go
    Listen on the go

    Learn how you like with full eTextbook audio

  • Find it fast
    Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized
    Stay organized

    Access all your eTextbooks in one place

  • Easily continue access
    Easily continue access

    Keep learning with auto-renew

Basic Chemistry prepares you for science-related professions, such as engineering, nursing, medicine, environmental or agricultural science, and laboratory technology. The authors make the study of chemistry an engaging and a positive experience by relating the structure and behavior of matter to real life. The goal of text is to help you develop critical thinking skills by understanding scientific concepts.

The 6th Edition presents more Challenge problems and new practice problems to help you master the basic quantitative skills and conceptual understanding for success in this course.

Published by Pearson (June 4th 2019) - Copyright © 2020

ISBN-13: 9780135765982

Subject: Chemistry

Category: Introduction to Chemistry

  1. Chemistry in Our Lives
    • 1.1 Chemistry and Chemicals
    • 1.2 Scientific Method: Thinking Like a Scientist
    • 1.3 Studying and Learning Chemistry
    • 1.4 Key Math Skills for Chemistry
    • 1.5 Writing Numbers in Scientific Notation
  1. Chemistry and Measurements
    • 2.1 Units of Measurement
    • 2.2 Measured Numbers and Significant Figures
    • 2.3 Significant Figures in Calculations
    • 2.4 Prefixes and Equalities
    • 2.5 Writing Conversion Factors
    • 2.6 Problem Solving Using Unit Conversion
    • 2.7 Density
  1. Matter and Energy
    • 3.1 Classification of Matter
    • 3.2 States and Properties of Matter
    • 3.3 Temperature
    • 3.4 Energy
    • 3.5 Specific Heat
    • 3.6 Energy and Nutrition
  1. Atoms and Elements
    • 4.1 Elements and Symbols
    • 4.2 The Periodic Table
    • 4.3 The Atom
    • 4.4 Atomic Number and Mass Number
    • 4.5 Isotopes and Atomic Mass
  1. Electronic Structure of Atoms and Periodic Trends
    • 5.1 Electromagnetic Radiation
    • 5.2 Atomic Spectra and Energy Levels
    • 5.3 Sublevels and Orbitals
    • 5.4 Orbital Diagrams and Electron Configurations
    • 5.5 Electron Configurations and the Periodic Table
    • 5.6 Trends in Periodic Properties
  1. Ionic and Molecular Compounds
    • 6.1 Ions: Transfer of Electrons
    • 6.2 Ionic Compounds
    • 6.3 Naming and Writing Ionic Formulas
    • 6.4 Polyatomic Ions
    • 6.5 Molecular Compounds: Sharing Electrons
  1. Chemical Quantities
    • 7.1 The Mole
    • 7.2 Molar Mass
    • 7.3 Calculations Using Molar Mass
    • 7.4 Mass Percent Composition
    • 7.5 Empirical Formulas
    • 7.6 Molecular Formulas
  1. Chemical Reactions
    • 8.1 Equations for Chemical Reactions
    • 8.2 Balancing a Chemical Equation
    • 8.3 Types of Chemical Reactions
    • 8.4 Oxidation—Reduction Reactions
  1. Chemical Quantities in Reactions
    • 9.1 Conservation of Mass
    • 9.2 Mole Relationships in Chemical Equations
    • 9.3 Mass Calculations for Chemical Reactions
    • 9.4 Limiting Reactants
    • 9.5 Percent Yield
    • 9.6 Energy in Chemical Reactions
  1. Bonding and Properties of Solids and Liquids
    • 10.1 Lewis Structures for Molecules and Polyatomic Ions
    • 10.2 Resonance Structures
    • 10.3 Shapes of Molecules and Polyatomic Ions (VSEPR Theory)
    • 10.4 Electronegativity and Bond Polarity
    • 10.5 Polarity of Molecules
    • 10.6 Intermolecular Forces Between Atoms or Molecules
    • 10.7 Changes of State
  1. Gases
    • 11.1 Properties of Gases
    • 11.2 Pressure and Volume (Boyle's Law)
    • 11.3 Temperature and Volume (Charles's Law)
    • 11.4 Temperature and Pressure (Gay-Lussac's Law)
    • 11.5 The Combined Gas Law
    • 11.6 Volume and Moles (Avogadro's Law)
    • 11.7 The Ideal Gas Law
    • 11.8 Gas Laws and Chemical Reactions
    • 11.9 Partial Pressures (Dalton's Law)
  1. Solutions
    • 12.1 Solutions
    • 12.2 Electrolytes and Nonelectrolytes
    • 12.3 Solubility
    • 12.4 Solution Concentrations
    • 12.5 Dilution of Solutions
    • 12.6 Chemical Reactions in Solution
    • 12.7 Molality and Freezing Point Lowering/Boiling Point Elevation
    • 12.8 Properties of Solutions: Osmosis
  1. Reaction Rates and Chemical Equilibrium
    • 13.1 Rates of Reactions
    • 13.2 Chemical Equilibrium
    • 13.3 Equilibrium Constants
    • 13.4 Using Equilibrium Constants
    • 13.5 Changing Equilibrium Conditions: Le Châtelier's Principle
  1. Acids and Bases
    • 14.1 Acids and Bases
    • 14.2 Brønsted—Lowry Acids and Bases
    • 14.3 Strengths of Acids and Bases
    • 14.4 Dissociation Constants of Weak Acids and Bases
    • 14.5 Dissociation of Water
    • 14.6 The pH Scale
    • 14.7 Reactions of Acids and Bases
    • 14.8 Acid—Base Titration
    • 14.9 Buffers
  1. Oxidation and Reduction
    • 15.1 Oxidation and Reduction
    • 15.2 Balancing Oxidation—Reduction Equations Using Half-Reactions
    • 15.3 Electrical Energy from Oxidation—Reduction Reactions
    • 15.4 Oxidation—Reduction Reactions That Require Electrical Energy
  1. Nuclear Chemistry
    • 16.1 Natural Radioactivity
    • 16.2 Nuclear Reactions
    • 16.3 Radiation Measurement
    • 16.4 Half-Life of a Radioisotope
    • 16.5 Medical Applications Using Radioactivity
    • 16.6 Nuclear Fission and Fusion
  1. Organic Chemistry
    • 17.1 Alkanes
    • 17.2 Alkenes, Alkynes, and Polymers
    • 17.3 Aromatic Compounds
    • 17.4 Alcohols and Ethers
    • 17.5 Aldehydes and Ketones
    • 17.6 Carboxylic Acids and Esters
    • 17.7 Amines and Amides
  1. Biochemistry
    • 18.1 Carbohydrates
    • 18.2 Disaccharides and Polysaccharides
    • 18.3 Lipids
    • 18.4 Amino Acids and Proteins
    • 18.5 Protein Structure
    • 18.6 Proteins as Enzymes
    • 18.7 Nucleic Acids
    • 18.8 Protein Synthesis