Table of Contents
1. Circuit Variables
2. Circuit Elements
3. Simple Resistive Circuits
4. Techniques of Circuit Analysis
5. The Operational Amplifier
6. Inductance, Capacitance, and Mutual Inductance
7. Response of First-Order RL and RC Circuits
8. Natural and Step Responses of RLC Circuits
9. Sinusoidal Steady-State Analysis
10. Sinusoidal Steady-State Power Calculations
11. Balanced Three-Phase Circuits
12. Introduction to the Laplace Transform
13. The Laplace Transform in Circuit Analysis
14. Introduction to Frequency Selective Circuits
15. Active Filter Circuits
16. Fourier Series
17. The Fourier Transform
18. Two-Port Circuits
Appendix A: The Solution of Linear Simultaneous Equations
Appendix B: Complex Numbers
Appendix C: More on Magnetically Coupled Coils and Ideal Transformers
Appendix D: The Decibel
Appendix E: Bode Diagrams
Appendix F: An Abbreviated Table of Trigonometric Identities
Appendix G: An Abbreviated Table of Integrals
Appendix H: Common Standard Component Values
3 Force System Resultants
Chapter Objectives
3.1 Moment of a Force–Scalar Formulation
3.2 Cross Product
3.3 Moment of a Force–Vector Formulation
3.4 Principle of Moments
3.5 Moment of a Force about a Specified Axis
3.6 Moment of a Couple
3.7 Simplification of a Force and Couple System
3.8 Further Simplification of a Force and Couple System
3.9 Reduction of a Simple Distributed Loading
4 Equilibrium of a Rigid Body
Chapter Objectives
4.1 Conditions for Rigid-Body Equilibrium
4.2 Free-Body Diagrams
4.3 Equations of Equilibrium
4.4 Two- and Three-Force Members
4.5 Free-Body Diagrams
4.6 Equations of Equilibrium
4.7 Characteristics of Dry Friction
4.8 Problems Involving Dry Friction
5 Structural Analysis
Chapter Objectives
5.1 Simple Trusses
5.2 The Method of Joints
5.3 Zero-Force Members
5.4 The Method of Sections
5.5 Frames and Machines
6 Center of Gravity, Centroid, and Moment of Inertia
Chapter Objectives
6.1 Center of Gravity and the Centroid of a Body
6.2 Composite Bodies
6.3 Moments of Inertia for Areas
6.4 Parallel-Axis Theorem for an Area
6.5 Moments of Inertia for Composite Areas
7 Stress and Strain
Chapter Objectives
7.1 Introduction
7.2 Internal Resultant Loadings
7.3 Stress
7.4 Average Normal Stress in an Axially Loaded Bar
7.5 Average Shear Stress
7.6 Allowable Stress Design
7.7 Deformation
7.8 Strain
8 Mechanical Properties of Materials
Chapter Objectives
8.1 The Tension and Compression Test
8.2 The Stress—Strain Diagram
8.3 Stress—Strain Behavior of Ductile and Brittle Materials
8.4 Strain Energy
8.5 Poisson’s Ratio
8.6 The Shear Stress—Strain Diagram
9 Axial Load
Chapter Objectives
9.1 Saint-Venant’s Principle
9.2 Elastic Deformation of an Axially Loaded Member
9.3 Principle of Superposition
9.4 Statically Indeterminate Axially Loaded Members
9.5 The Force Method of Analysis for Axially Loaded Members
9.6 Thermal Stress
10 Torsion
Chapter Objectives
10.1 Torsional Deformation of a Circular Shaft
10.2 The Torsion Formula
10.3 Power Transmission
10.4 Angle of Twist
10.5 Statically Indeterminate Torque-Loaded Members
11 Bending
Chapter Objectives
11.1 Shear and Moment Diagrams
11.2 Graphical Method for Constructing
Shear and Moment Diagrams
11.3 Bending Deformation of a Straight Member
11.4 The Flexure Formula
11.5 Unsymmetric Bending
12 Transverse Shear
Chapter Objectives
12.1 Shear in Straight Members
12.2 The Shear Formula
12.3 Shear Flow in Built-Up Members
13 Combined Loadings
Chapter Objectives
13.1 Thin-Walled Pressure Vessels
13.2 State of Stress Caused by Combined Loadings
14 Stress and Strain Transformation
Chapter Objectives
14.1 Plane-Stress Transformation
14.2 General Equations of Plane-Stress Transformation
14.3 Principal Stresses and Maximum In-Plane Shear Stress
14.4 Mohr’s Circle–Plane Stress
14.5 Absolute Maximum Shear Stress
14.6 Plane Strain
14.7 General Equations of Plane-Strain Transformation
*14.8 Mohr’s Circle–Plane Strain
*14.9 Absolute Maximum Shear Strain
14.10 Strain Rosettes
14.11 Material Property Relationships
15 Design of Beams and Shafts
Chapter Objectives
15.1 Basis for Beam Design
15.2 Prismatic Beam Design
16 Deflection of Beams and Shafts
Chapter Objectives
16.1 The Elastic Curve
16.2 Slope and Displacement by Integration
*16.3 Discontinuity Functions
16.4 Method of Superposition
16.5 Statically Indeterminate Beams and Shafts–Method of Superposition
17 Buckling of Columns
Chapter Objectives
17.1 Critical Load
17.2 Ideal Column with Pin Supports
17.3 Columns Having Various Types of Supports
*17.4 The Secant Formula
Appendix
A Mathematical Review and Expressions
B Geometric Properties of An Area and Volume
C Geometric Properties of Wide-Flange Sections
D Slopes and Deflections of Beams
Preliminary Problems Solutions
Fundamental Problems
Solutions and Answers
Selected Answers
Index