Mechanics of Materials, 10th edition

Published by Pearson (January 4, 2016) © 2017

  • Russell C. Hibbeler
Products list

Details

  • Loose-leaf, 3-hole-punched pages
Products list

Access details

  • eTextbook included
  • Instant access once purchased
  • Register with a Course ID, a link from your instructor or an LMS link (Blackboardâ„¢, Canvasâ„¢, Moodle or D2L®)

Features

  • Interactive digital learning experience
  • Help when and where you need it
  • Instant feedback on assignments
  • Study tools

For undergraduate Mechanics of Materials courses in Mechanical, Civil, and Aerospace Engineering departments.

Thorough coverage, a highly visual presentation, and increased problem solving from an author you trust.

Mechanics of Materials clearly and thoroughly presents the theory and supports the application of essential mechanics of materials principles. Professor Hibbeler’s concise writing style, countless examples, and stunning four-color photorealistic art program — all shaped by the comments and suggestions of hundreds of colleagues and students — help students visualize and master difficult concepts. The Tenth Edition retains the hallmark features synonymous with the Hibbeler franchise, but has been enhanced with the most current information, a fresh new layout, added problem solving, and increased flexibility in the way topics are covered in class.

Also available with MasteringEngineeringâ„¢.

This title is also available with MasteringEngineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and MasteringEngineering work together to guide students through engineering concepts with a multi-step approach to problems.

 

1. Stress

Chapter Objectives   

1.1          Introduction

1.2          Equilibrium of a Deformable Body

1.3          Stress

1.4          Average Normal Stress in an Axially Loaded Bar   

1.5          Average Shear Stress   

1.6          Allowable Stress Design   

1.7          Limit State Design   

 

2. Strain

Chapter Objectives   

2.1          Deformation

2.2          Strain

 

3. Mechanical Properties of Materials

Chapter Objectives

3.1          The Tension and Compression Test

3.2          The Stress—Strain Diagram

3.3          Stress—Strain Behavior of Ductile and Brittle Materials    

3.4          Strain Energy

3.5          Poisson’s Ratio   

3.6          The Shear Stress—Strain Diagram    

*3.7        Failure of Materials Due to Creep and Fatigue   

 

4. Axial Load

Chapter Objectives   

4.1          Saint-Venant’s Principle    

4.2          Elastic Deformation of an Axially Loaded Member

4.3          Principle of Superposition   

4.4          Statically Indeterminate Axially Loaded Members

4.5          The Force Method of Analysis for Axially Loaded Members   

4.6          Thermal Stress   

4.7          Stress Concentrations    

*4.8         Inelastic Axial Deformation   

*4.9         Residual Stress   

 

5. Torsion

Chapter Objectives

5.1          Torsional Deformation of a Circular Shaft

5.2          The Torsion Formula    

Need help? Get in touch