Preface xv
New to This Edition xvii
Acknowledgments xix
About the Authors xxiii
Chapter 1 IntroductionÂ
1.1 Introduction to FireÂ
1.2 Changes That Affect Fire DangersÂ
1.3 Fire Dynamics: The Link to Collaborative Fire ProtectionÂ
1.3.1 Fire Suppression PersonnelÂ
1.3.2 Fire Protection Engineering and Code Enforcement PersonnelÂ
1.3.3 Fire and Explosion Investigator PersonnelÂ
1.4 Outline of the TextÂ
SummaryÂ
Case StudiesÂ
Review QuestionsÂ
ReferenceÂ
Chapter 2 Fire BasicsÂ
2.1 Definition of FireÂ
2.2 The Fire Triangle and Fire TetrahedronÂ
2.3 Classification of Fuels in FireÂ
2.3.1 Class AÂ
2.3.2 Class BÂ
2.3.3 Class CÂ
2.3.4 Class DÂ
2.3.5 Class KÂ
2.4 Fire Hazards Related to the U.S. Department of Transportation Hazard Classification SystemÂ
2.4.1 Class 1-ExplosivesÂ
2.4.2 Class 2-Compressed GasÂ
2.4.3 Class 3-Flammable and Combustible LiquidsÂ
2.4.4 Class 4-Flammable SolidsÂ
2.4.5 Class 5-Oxidizing AgentsÂ
2.4.6 Class 6-PoisonsÂ
2.4.7 Class 7-Radioactive MaterialsÂ
2.4.8 Class 8-CorrosivesÂ
2.4.9 Class 9-Miscellaneous Hazardous MaterialsÂ
2.5 FlamesÂ
2.6 Fire PlumeÂ
2.7 Flame SpreadÂ
2.8 Heat and TemperatureÂ
2.9 Energy, Work, and ThermodynamicsÂ
2.10 Heat of CombustionÂ
2.11 Combustion EfficiencyÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 3 Math Review for Basic Fire Science ApplicationsÂ
3.1 AlgebraÂ
3.1.1 Algebraic ExpressionsÂ
3.1.2 Order of OperationsÂ
3.1.3 RateÂ
3.1.4 FluxÂ
3.1.5 Significant IntegersÂ
3.1.6 Coordinate SystemÂ
3.2 Units of MeasureÂ
3.2.1 LengthÂ
3.2.2 AreaÂ
3.2.3 VolumeÂ
3.2.4 TemperatureÂ
3.2.5 EnergyÂ
3.2.6 MassÂ
3.2.7 PressureÂ
3.2.8 TimeÂ
3.3 Conversion Between UnitsÂ
3.4 Scaling ImagesÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 4 Fires from Gas Phase FuelsÂ
4.1 MatterÂ
4.1.1 Vapor DensityÂ
4.2 General Physical Properties of the Gaseous StateÂ
4.2.1 Boyle's LawÂ
4.2.2 Charles's LawÂ
4.2.3 Combined Gas LawÂ
4.3 Pressure and Its MeasurementÂ
4.4 General Chemistry ConceptsÂ
4.4.1 Chemical Reactions and EquationsÂ
4.4.2 PolymersÂ
4.4.3 Balancing Chemical EquationsÂ
4.5 Oxidation ReactionsÂ
4.5.1 Combustion of MethaneÂ
4.6 SmokeÂ
4.6.1 Toxicity of SmokeÂ
4.6.2 Visibility Effects of SmokeÂ
4.7 Gaseous CombustionÂ
4.8 Dependence of Flammability Limits on Temperature, Pressure, and Oxygen
ConcentrationÂ
4.9 Ignition EnergyÂ
4.10 Flame PropagationÂ
4.11 Warning About Flammable GasesÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 5 Fires from Liquid Phase FuelsÂ
5.1 Liquid MatterÂ
5.2 General Physical Properties of the Liquid StateÂ
5.2.1 Specific GravityÂ
5.2.2 Miscibility and SolubilityÂ
5.2.3 Vapor PressureÂ
5.3 Altering Phase Change TemperaturesÂ
5.3.1 Solutions and CompoundsÂ
5.3.2 Pressure ChangeÂ
5.3.3 Specific HeatÂ
5.4 Change in States of MatterÂ
5.4.1 Volume ExpansionÂ
5.4.2 Expansion of Matter (Solids and Liquids)Â
5.5 Liquid IgnitabilityÂ
5.5.1 Flash Point and Fire PointÂ
5.5.2 Classification of Ignitable LiquidsÂ
5.5.3 Ignition ConceptsÂ
5.6 Combustible LiquidsÂ
5.6.1 MixturesÂ
5.6.2 AerosolsÂ
5.6.3 Thin FilmÂ
5.6.4 WickingÂ
5.7 Pool FiresÂ
5.7.1 Burning DurationÂ
5.7.2 Application of KnowledgeÂ
5.7.3 Frothing, Slopover, and BoiloverÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 6 Fires from Solid Phase FuelsÂ
6.1 Solid MatterÂ
6.2 PyrolysisÂ
6.3 CHARÂ
6.4 Smoldering CombustionÂ
6.5 MeltingÂ
6.6 DehydrationÂ
6.7 Characteristics of Cellulosic FuelsÂ
6.8 Characteristics of Upholstered FurnitureÂ
6.9 Characteristics of Polymer FuelsÂ
6.10 Characteristics of Combustible Metals
6.11 Flame SpreadÂ
6.12 Variables Affecting Solid CombustionÂ
6.12.1 Surface Area--to--Mass RelationshipÂ
6.12.2 OrientationÂ
6.12.3 Thermal InertiaÂ
6.13 Fire RetardantsÂ
6.13.1 Potential Toxicity of Fire RetardantsÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 7 Heat Release RateÂ
7.1 Importance of Heat Release RateÂ
7.2 General IntroductionÂ
7.3 Methods for Determining Heat Release RateÂ
7.3.1 Heat of CombustionÂ
7.3.2 Combustion EfficiencyÂ
7.3.3 Mass Burning Flux (Mass Flux)Â
7.3.4 AreaÂ
7.4 Heat Release Rate CurvesÂ
7.5 Heat Release Rate of Some ObjectsÂ
7.6 Methods of Applying Heat Release Rate CurvesÂ
7.6.1 Simplified Shapes for Fire Growth CurvesÂ
7.6.2 t2 Fire Growth CurvesÂ
7.6.3 Combining Multiple Fuel Packages into a Single Fire Growth CurveÂ
7.7 Some Practical ApplicationsÂ
7.7.1 Pool FiresÂ
7.7.2 Solid Fuels: Upholstered FurnitureÂ
7.8 Flame HeightÂ
7.8.1 Method of ThomasÂ
7.8.2 Method of HeskestadÂ
7.9 Relationship of Heat Release Rate and the PlumeÂ
7.10 Measuring Heat Release Rate and Its EffectsÂ
7.10.1 Measurement of Heat Release Rate Using Oxygen Consumption CalorimetryÂ
7.11 Basic Fire Testing InstrumentationÂ
7.11.1 ThermocoupleÂ
7.11.2 Heat Flux GaugeÂ
7.11.3 Bi-Directional Probe (BDP)Â
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 8 IgnitionÂ
8.1 Fire Triangle/Fire Tetrahedron RevisitedÂ
8.2 Fire Ignition StatisticsÂ
8.3 Ignition EnergyÂ
8.3.1 Minimum Ignition EnergyÂ
8.3.2 Piloted IgnitionÂ
8.3.3 Autoignition (Autogenous Ignition)Â
8.3.4 Differences and Similarities between Ignition ConceptsÂ
8.4 Energy of the Ignition SourceÂ
8.5 Heat TransferÂ
8.6 Historical Background on HeatÂ
8.7 ConductionÂ
8.8 ConvectionÂ
8.9 RadiationÂ
8.9.1 Empirical Approach to Heat FluxÂ
8.9.2 Point Source Model for Heat FluxÂ
8.9.3 View Factor Model for Heat FluxÂ
8.9.4 Emissive PowerÂ
8.10 Relationship to the FlameÂ
8.11 Material PropertiesÂ
8.11.1 Surface Area--to--Mass RatioÂ
8.11.2 GeometryÂ
8.11.3 DensityÂ
8.11.4 OrientationÂ
8.12 Time to Ignition Calculations for Solid FuelsÂ
8.12.1 Ignition of Thermally Thin Solids
8.12.2 Ignition of Thermally Thick SolidsÂ
8.13 Spontaneous IgnitionÂ
8.14 Ignitability and Flammability TestingÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 9 Enclosure Fire Dynamic Basics
9.1 IntroductionÂ
9.2 IgnitionÂ
9.3 GrowthÂ
9.3.1 Plume FormationÂ
9.3.2 Ceiling JetÂ
9.3.3 Upper Layer DevelopmentÂ
9.3.4 Sprinkler and Heat Detector ActivationÂ
9.3.5 Ventilation OpeningsÂ
9.4 Progression of a Fuel-Controlled Enclosure FireÂ
9.4.1 Curve Number 1Â
9.4.2 Curve Number 2Â
9.4.3 Components That Control FlashoverÂ
9.4.4 Indicators of FlashoverÂ
9.4.5 Flashover CalculationsÂ
9.4.6 Curve Number 3
9.5 Progression of a Ventilation-Controlled Enclosure Fire
9.5.1 Curve Number 4Â
9.5.2 Curve Number 5Â
9.6 Impact of Changing Ventilation ConditionsÂ
9.6.1 Curve Number 6Â
9.7 Misconceptions Regarding BackdraftÂ
9.7.1 Misconception: "Backdraft Is Fueled by Carbon Monoxide"Â
9.8 Full-Room InvolvementÂ
9.9 Combustion Products for Occupant SafetyÂ
9.9.1 Fire Environment Exposure (Toxicity)Â
9.9.2 Smoke, Irritants, and VisibilityÂ
9.9.3 Asphyxiant GasesÂ
9.10 CalculationsÂ
9.11 DecayÂ
9.12 Effects of Smoke in CompartmentsÂ
9.12.1 Stack Effect (Buoyancy Effects on Smoke Movement)Â
9.12.2 Smoke Control MethodsÂ
9.11.3 Amount of Smoke Produced by a FireÂ
9.11.4 Smoke Fill Rate in a CompartmentÂ
9.13 Reaching the LFL within a CompartmentÂ
SummaryÂ
Case StudyÂ
Review QuestionsÂ
ReferencesÂ
Chapter 10 Extinguishment
10.1 Extinguishment of Fire
10.2 Removal of FuelÂ
10.2.1 Turn Off Fuel SupplyÂ
10.2.2 Separation of FuelÂ
10.2.3 Fire Consumes FuelÂ
10.3 Removal of Heat
10.3.1 Air MovementÂ
10.3.2 WaterÂ
10.3.3 Volume ExpansionÂ
10.3.4 Fog Fire StreamsÂ
10.4 Water Volume CalculationsÂ
10.5 Fire Suppression CalculationsÂ
10.6 Sprinkler SystemsÂ
10.7 Water SummaryÂ
10.8 Foam Extinguishing AgentsÂ
10.8.1 Environmental Concern for Foam UseÂ
10.9 Removal of OxygenÂ
10.10 Oxygen DisplacementÂ
10.11 Cooling Effect of Inert GasÂ
10.12 Class D FiresÂ
10.13 Interrupting a Chemical Chain ReactionÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Chapter 11 ExplosionsÂ
11.1 Introduction to ExplosionsÂ
11.2 Gas ExplosionsÂ
11.2.1 Common Fuel GasesÂ
11.3 Boiling Liquid Expanding Vapor Explosions (BLEVE)Â
11.4 Unconfined Vapor Cloud Explosion (UVCE)Â
11.5 Fire and Explosion Dangers in Concentrated Dust EnvironmentsÂ
11.6 Blast Effects and Overpressure Effects 25011.6.1 Blast Damage to BuildingsÂ
11.6.2 Blast InjuriesÂ
11.7 TNT EquivalencyÂ
11.7.1 Relationship of TNT Equivalence to OverpressureÂ
11.7.2 Relationship of Overpressure to DamageÂ
Review QuestionsÂ
ReferencesÂ
Chapter 12 Introduction to Fire Modeling
12.1 History and Basics of Fire Testing and ModelingÂ
12.2 Computer Fire Modeling ApplicationsÂ
12.2.1 Fire Protection EngineeringÂ
12.2.2 Fire InvestigationÂ
12.3 Types of ModelsÂ
12.3.1 Hand CalculationsÂ
12.3.2 Spreadsheet ModelsÂ
12.3.3 Zone ModelsÂ
12.3.4 Computational Fluid Dynamics Models (Field Models)Â
12.4 Input Data Needed for Computer Fire ModelingÂ
12.5 Testing of an Origin Hypothesis with Computer Fire Models
12.6 Modeling Fire Suppression ActivitiesÂ
12.7 Verification and Validation of Computer ModelsÂ
SummaryÂ
Review QuestionsÂ
ReferencesÂ
Appendix A Digital ResourcesÂ
Appendix BÂ
Appendix C Reference TablesÂ
Glossary
IndexÂ