Feedback Control Systems, 5th edition

Published by Pearson (November 24, 2010) © 2011

  • Charles L. Phillips (Emeritus) Auburn University
  • John Parr
Products list

Details

  • A print text

This product is expected to ship within 3-6 business days for US and 5-10 business days for Canadian customers.

For junior/senior-level Control Theory courses in Electrical, Mechanical, and Aerospace Engineering.

¿

For a First Course in Control Systems.

¿

Feedback Control Systems, 5e offers a thorough analysis of the principles of classical and modern feedback control in language that can be understood by students and practicing engineers with no prior background in the subject matter. Organized into three sections — analog control systems, digital control systems, and nonlinear analog control systems —this text helps students understand the difference between mathematical models and the physical systems that the models represent.

¿

The Fifth edition provides a new introduction to modern control analysis and design for digital systems, the addition of emulation methods of design for digital control, and numerous other updates.

¿

1    INTRODUCTION

1.1  The Control Problem 

1.2  Examples of Control Systems

1.3  Short History of Control  

References 

 

2    MODELS OF PHYSICAL SYSTEMS  

2.1  System Modeling   

2.2  Electrical Circuits   

2.3  Block Diagrams and Signal Flow Graphs  

2.4  Masonís Gain Formula   

2.5  Mechanical Translational Systems  

2.6  Mechanical Rotational Systems  

2.7  Electromechanical Systems  

2.8  Sensors  

2.9  Temperature-control System  

2.10 Analogous Systems  

2.11 Transformers and Gears  

2.12 Robotic Control System   

2.13 System Identification   

2.14 Linearization   

2.15 Summary  

References  

Problems

 

3    STATE-VARIABLE MODELS  

3.1  State-Variable Modeling  

3.2  Simulation Diagrams  

3.3  Solution of State Equations  

3.4  Transfer Functions  

3.5  Similarity Transformations  

3.6  Digital Simulation   

3.7  Controls Software   

3.8  Analog Simulation   

3.9  Summary   

References   

Problems   

 

4    SYSTEM RESPONSES  

4.1  Time Response of First-Order Systems   

4.2  Time Response of Second-order Systems   

4.3  Time Response Specifications in Design   

4.4  Frequency Response of Systems   

4.5  Time and Frequency Scaling   

4.6  Response of Higher-order Systems   

4.7  Reduced-order Models   

4.8  Summary   

References   

Problems   

 

5    CONTROL SYSTEM CHARACTERISTICS   

5.1  Closed-loop Control System   

5.2  Stability   

5.3  Sensitivity   

5.4  Disturbance Rejection   

5.5  Steady-state Accuracy   

5.6  Transient Response   

5.7  Closed-loop Frequency Response  

5.8  Summary   

References  

Problems   

 

6    STABILITY ANALYSIS

6.1  Routh-Hurwitz Stability Criterion   

6.2  Roots of the Characteristic Equation   

6.3  Stability by Simulation   

6.4  Summary  

Problems  

 

7    ROOT-LOCUS ANALYSIS AND DESIGN   

7.1  Root-Locus Principles  

7.2  Some Root-Locus Techniques  

7.3  Additional Root-Locus Techniques  

7.4  Additional Properties of the Root Locus   

7.5  Other Configurations  

7.6  Root-Locus Design   

7.7  Phase-lead Design   

7.8  Analytical Phase-Lead Design   

7.9  Phase-Lag Design   

7.10 PID Design   

7.11 Analytical PID Design   

7.12 Complementary Root Locus  

7.13 Compensator Realization   

7.14 Summary  

References  

Problems 

 

8    FREQUENCY-RESPONSE ANALYSIS 

8.1  Frequency Responses  

8.2  Bode Diagrams  

8.3  Additional Terms  

8.4  Nyquist Criterion   

8.5  Application of the Nyquist Criterion   

8.6  Relative Stability and the Bode Diagram  

8.7  Closed-Loop Frequency Response  

8.8  Summary  

References  

Problems 

 

9    FREQUENCY-RESPONSE DESIGN   

9.1  Control System Specifications  

9.2  Compensation   

9.3  Gain Compensation   

9.4  Phase-Lag Compensation   

9.5  Phase-Lead Compensation    

9.6  Analytical Design  

9.7  Lag-Lead Compensation  

9.8  PID Controller Design   

9.9  Analytical PID Controller Design   

9.10 PID Controller Implementation   

9.11 Frequency-Response Software  

9.12 Summary  

References  

Problems 

 

10   MODERN CONTROL DESIGN  

10.1 Pole-Placement Design  

10.2 Ackermannís Formula  

10.3 State Estimation  

10.4 Closed-Loop System Characteristics  

10.5 Reduced-Order Estimators  

10.6 Controllability and Observability  

10.7 Systems with Inputs  

10.8 Summary  

References  

Problems  

 

11   DISCRETE-TIME SYSTEMS  

11.1 Discrete-Time System  

11.2 Transform Methods  

11.3 Theorems of the z-Transform  

11.4 Solution of Difference Equations  

11.5 Inverse z-Transform  

11.6 Simulation Diagrams and Flow Graphs 

11.7 State Variables  

11.8 Solution of State Equations  

11.9 Summary  

References  

Problems 

 

12   SAMPLED-DATA SYSTEMS   

12.1 Sampled Data  

12.2 Ideal Sampler  

12.3 Properties of the Starred Transform  

12.4 Data Reconstruction  

12.5 Pulse Transfer Function  

12.6 Open-Loop Systems Containing Digital Filters  

12.7 Closed-Loop Discrete-Time Systems  

12.8 Transfer Functions for Closed-Loop Systems  

12.9 State Variables for Sampled-Data Systems  

12.10     Summary  

References  

Problems  

 

13   ANALYSIS AND DESIGN OF DIGITAL CONTROL SYSTEMS 

13.1 Two Examples

13.2 Discrete System Stability 

13.3 Juryís Test  

13.4 Mapping the s-Plane into the z-Plane

13.5 Root Locus   

13.6 Nyquist Criterion   

13.7 Bilinear Transformation   

13.8 RouthñHurwitz Criterion   

13.9 Bode Diagram   

13.10     Steady-State Accuracy 

13.11     Design of Digital Control Systems 

13.12     Phase-Lag Design  

13.13     Phase-Lead Design 

13.14     Digital PID Controllers 

13.15     Root-Locus Design 

13.16     Summary  

References  

Problems  

 

14 DISCRETE-TIME POLE-ASSIGNMENT AND STATE ESTIMATION

14.1 Introduction

14.2 Pole Assignment

14.3 State Estimtion

14.4 Reduced-Order Observers

14.5 Current Observers

14.6 Controllability and Observability

14.7 Systems and Inputs

14.8 Summary

     References

     Problems

 

 

15   NONLINEAR SYSTEM ANALYSIS   

15.1 Nonlinear System Definitions and Properties  

15.2 Review of the Nyquist Criterion   

15.3 Describing Function   

15.4 Derivations of Describing Functions  

15.5 Use of the Describing Function   

15.6 Stability of Limit Cycles  

15.7 Design   

15.8 Application to Other Systems  

15.9 Linearization  

15.10     Equilibrium States and Lyapunov Stability  

15.11     State Plane Analysis  

15.12     Linear-System Response  

15.13     Summary  

 

References  

Problems 

APPENDICES   

 

A    Matrices 

B    Laplace Transform 

C    Laplace Transform and z-Transform Tables 

D    MATLAB Commands Used in This Text

E    Answers to Selected Problems

 

INDEX    

Need help? Get in touch