1Â Â Â INTRODUCTION
1.1Â The Control ProblemÂ
1.2Â Examples of Control Systems
1.3 Short History of Control Â
ReferencesÂ
Â
2Â Â Â MODELS OF PHYSICAL SYSTEMSÂ Â
2.1 System Modeling  Â
2.2 Electrical Circuits  Â
2.3 Block Diagrams and Signal Flow Graphs Â
2.4 MasonÃs Gain Formula  Â
2.5 Mechanical Translational Systems Â
2.6 Mechanical Rotational Systems Â
2.7 Electromechanical Systems Â
2.8 Sensors Â
2.9 Temperature-control System Â
2.10 Analogous Systems Â
2.11 Transformers and Gears Â
2.12 Robotic Control System  Â
2.13 System Identification  Â
2.14 Linearization  Â
2.15 Summary Â
References Â
Problems
Â
3Â Â Â STATE-VARIABLE MODELSÂ Â
3.1 State-Variable Modeling Â
3.2 Simulation Diagrams Â
3.3 Solution of State Equations Â
3.4 Transfer Functions Â
3.5 Similarity Transformations Â
3.6 Digital Simulation  Â
3.7 Controls Software  Â
3.8 Analog Simulation  Â
3.9 Summary  Â
References  Â
Problems  Â
Â
4Â Â Â SYSTEM RESPONSESÂ Â
4.1 Time Response of First-Order Systems  Â
4.2 Time Response of Second-order Systems  Â
4.3 Time Response Specifications in Design  Â
4.4 Frequency Response of Systems  Â
4.5 Time and Frequency Scaling  Â
4.6 Response of Higher-order Systems  Â
4.7 Reduced-order Models  Â
4.8 Summary  Â
References  Â
Problems  Â
Â
5Â Â Â CONTROL SYSTEM CHARACTERISTICSÂ Â Â
5.1 Closed-loop Control System  Â
5.2 Stability  Â
5.3 Sensitivity  Â
5.4 Disturbance Rejection  Â
5.5 Steady-state Accuracy  Â
5.6 Transient Response  Â
5.7 Closed-loop Frequency Response Â
5.8 Summary  Â
References Â
Problems  Â
Â
6Â Â Â STABILITY ANALYSIS
6.1 Routh-Hurwitz Stability Criterion  Â
6.2 Roots of the Characteristic Equation  Â
6.3 Stability by Simulation  Â
6.4 Summary Â
Problems Â
Â
7Â Â Â ROOT-LOCUS ANALYSIS AND DESIGNÂ Â Â
7.1 Root-Locus Principles Â
7.2 Some Root-Locus Techniques Â
7.3 Additional Root-Locus Techniques Â
7.4 Additional Properties of the Root Locus  Â
7.5 Other Configurations Â
7.6 Root-Locus Design  Â
7.7 Phase-lead Design  Â
7.8 Analytical Phase-Lead Design  Â
7.9 Phase-Lag Design  Â
7.10 PID Design  Â
7.11 Analytical PID Design  Â
7.12 Complementary Root Locus Â
7.13 Compensator Realization  Â
7.14 Summary Â
References Â
ProblemsÂ
Â
8Â Â Â FREQUENCY-RESPONSE ANALYSISÂ
8.1 Frequency Responses Â
8.2 Bode Diagrams Â
8.3 Additional Terms Â
8.4 Nyquist Criterion  Â
8.5 Application of the Nyquist Criterion  Â
8.6 Relative Stability and the Bode Diagram Â
8.7 Closed-Loop Frequency Response Â
8.8 Summary Â
References Â
ProblemsÂ
Â
9Â Â Â FREQUENCY-RESPONSE DESIGNÂ Â Â
9.1 Control System Specifications Â
9.2 Compensation  Â
9.3 Gain Compensation  Â
9.4 Phase-Lag Compensation  Â
9.5 Phase-Lead Compensation  Â
9.6 Analytical Design Â
9.7 Lag-Lead Compensation Â
9.8 PID Controller Design  Â
9.9 Analytical PID Controller Design  Â
9.10 PID Controller Implementation  Â
9.11 Frequency-Response Software Â
9.12 Summary Â
References Â
ProblemsÂ
Â
10Â Â MODERN CONTROL DESIGNÂ Â
10.1 Pole-Placement Design Â
10.2 AckermannÃs Formula Â
10.3 State Estimation Â
10.4 Closed-Loop System Characteristics Â
10.5 Reduced-Order Estimators Â
10.6 Controllability and Observability Â
10.7 Systems with Inputs Â
10.8 Summary Â
References Â
Problems Â
Â
11Â Â DISCRETE-TIME SYSTEMSÂ Â
11.1 Discrete-Time System Â
11.2 Transform Methods Â
11.3 Theorems of the z-Transform Â
11.4 Solution of Difference Equations Â
11.5 Inverse z-Transform Â
11.6 Simulation Diagrams and Flow GraphsÂ
11.7 State Variables Â
11.8 Solution of State Equations Â
11.9 Summary Â
References Â
ProblemsÂ
Â
12Â Â SAMPLED-DATA SYSTEMSÂ Â Â
12.1 Sampled Data Â
12.2 Ideal Sampler Â
12.3 Properties of the Starred Transform Â
12.4 Data Reconstruction Â
12.5 Pulse Transfer Function Â
12.6 Open-Loop Systems Containing Digital Filters Â
12.7 Closed-Loop Discrete-Time Systems Â
12.8 Transfer Functions for Closed-Loop Systems Â
12.9 State Variables for Sampled-Data Systems Â
12.10    Summary Â
References Â
Problems Â
Â
13Â Â ANALYSIS AND DESIGN OF DIGITAL CONTROL SYSTEMSÂ
13.1 Two Examples
13.2 Discrete System StabilityÂ
13.3 JuryÃs Test Â
13.4 Mapping the s-Plane into the z-Plane
13.5 Root Locus  Â
13.6 Nyquist Criterion  Â
13.7 Bilinear Transformation  Â
13.8 RouthñHurwitz Criterion  Â
13.9 Bode Diagram  Â
13.10Â Â Â Â Steady-State AccuracyÂ
13.11Â Â Â Â Design of Digital Control SystemsÂ
13.12    Phase-Lag Design Â
13.13Â Â Â Â Phase-Lead DesignÂ
13.14Â Â Â Â Digital PID ControllersÂ
13.15Â Â Â Â Root-Locus DesignÂ
13.16    Summary Â
References Â
Problems Â
Â
14 DISCRETE-TIME POLE-ASSIGNMENT AND STATE ESTIMATION
14.1 Introduction
14.2 Pole Assignment
14.3 State Estimtion
14.4 Reduced-Order Observers
14.5 Current Observers
14.6 Controllability and Observability
14.7 Systems and Inputs
14.8 Summary
    References
    Problems
Â
Â
15Â Â NONLINEAR SYSTEM ANALYSISÂ Â Â
15.1 Nonlinear System Definitions and Properties Â
15.2 Review of the Nyquist Criterion  Â
15.3 Describing Function  Â
15.4 Derivations of Describing Functions Â
15.5 Use of the Describing Function  Â
15.6 Stability of Limit Cycles Â
15.7 Design  Â
15.8 Application to Other Systems Â
15.9 Linearization Â
15.10    Equilibrium States and Lyapunov Stability Â
15.11    State Plane Analysis Â
15.12    Linear-System Response Â
15.13    Summary Â
Â
References Â
ProblemsÂ
APPENDICESÂ Â Â
Â
AÂ Â Â MatricesÂ
BÂ Â Â Laplace TransformÂ
CÂ Â Â Laplace Transform and z-Transform TablesÂ
DÂ Â Â MATLAB Commands Used in This Text
EÂ Â Â Answers to Selected Problems
Â
INDEXÂ Â Â Â