MATLAB-Based Electromagnetics, 1st edition
Published by Pearson (May 13, 2013) © 2014
- Branislav Notaros
eTextbook
- Easy-to-use search and navigation
- Add notes and highlights
- Search by keyword or page
- Hardcover, paperback or looseleaf edition
- Affordable rental option for select titles
Can be used to either complement available electromagnetics text, or as an independent resource. Designed primarily for undergraduate electromagnetics, but can also be used in follow-up courses on antennas, propagation, microwaves, advanced electromagnetic theory, computational electromagnetics, electrical machines, signal integrity, etc.
MATLAB-Based Electromagentics provides engineering and physics students and other users with an operational knowledge and firm grasp of electromagnetic fundamentals aimed toward practical engineering applications, by teaching them “hands on” electromagnetics through a unique and comprehensive collection of MATLAB computer exercises and projects. Essentially, the book unifies two themes: it presents and explains electromagnetics using MATLAB on one side, and develops and discusses MATLAB for electromagnetics on the other.
MATLAB codes described (and listed) in TUTORIALS or proposed in other exercises provide prolonged benefits of learning. By running codes; generating results, figures, and diagrams; playing movies and animations; and solving a large variety of problems in MATLAB, in class, with peers in study groups, or individually, students gain a deep understanding of electromagnetics.
Designed to support a variety of courses
MATLAB-Based Electromagnetics covers all important theoretical concepts, methodological procedures, and solution tools in electromagnetic fields and waves for undergraduates—organized in 12 chapters on electrostatic fields; steady electric currents; magnetostatic fields; time-varying electromagnetic fields; uniform plane electromagnetic waves; transmission lines; waveguides and cavity resonators; and antennas and wireless communication systems.
- The book provides two interwoven themes: presentation and study of electromagnetics using MATLAB and development and discussion of MATLAB for electromagnetics
- Provides a theoretical overview at the start of each section within each chapter of the book
- Can be used to either complement another electromagnetics text, or as an independent resource
- Designed primarily for undergraduate electromagnetics, but can also be used in follow-up courses on antennas, propagation, microwaves, advanced electromagnetic theory, computational electromagnetics, electrical machines, signal integrity, etc.
- Allows for flexibility in coverage of the material, including the transmission-lines-early and transmission-lines-first approaches
Spark independent learning and classroom discussion
Assignments of computer exercises along with traditional “by hand” problems help students develop a stronger intuition and a deeper understanding of electromagnetics. Moreover, this approach actively challenges and involves the student, providing additional benefit as compared to a passive computer demonstration. This book provides abundant opportunities for instructors to assign in-class and homework projects, and for students to engage in independent learning. MATLAB exercises are also ideal for interactive in-class explorations and discussions (active teaching and learning), and for teamwork and peer instruction (collaborative teaching/learning).
- Contains 389 MATLAB computer exercises and projects, covering and reinforcing practically all important theoretical concepts, methodologies, and problem-solving techniques in electromagnetic fields and waves
- Maintains a favorable balance of MATLAB exercises between static (one third) and dynamic (two thirds) topics
- Offers MATLAB exercises at all levels of difficulty, from a few lines of MATLAB code, to those requiring a great deal of initiative and exploration
- Contains 125 TUTORIALS with detailed solutions merged with listings of MATLAB codes (m files); a demo tutorial for every class of MATLAB problems and projects is provided
- Gives 98 HINTS with guidance on the solution, equations, and programming, often with portions of the code and/or resulting graphs and movie snapshots for validation
- Features 48 3-D and 2-D movies developed and played in MATLAB, which are extremely valuable for interactive visualizations of fields and waves
- Displays 133 figures generated in MATLAB with plots of geometries of structures, vector fields, guided and unbounded waves, wave polarization curves, Smith charts, transient signals, antenna patterns, etc.
- Presents 16 graphical user interfaces (GUIs) built in MATLAB to calculate and display parameters and characteristics of various electromagnetic structures, materials, and systems, selected from a pop-up menu
- Offers 130 MATLAB exercises recommended to be done also “by hand” – i.e., not using MATLAB, thus serving as traditional written problems
1.1 Coulomb’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Electric Field Intensity Vector Due to Given Charge Distributions . . . . . . . . . 9
1.3 Electric Scalar Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4 Differential Relationship Between the Field and Potential in Electrostatics, Gradient 26
1.5 Electric Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Gauss’ Law in Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.7 Differential Form of Gauss’ Law, Divergence . . . . . . . . . . . . . . . . . . . . . . 31
1.8 Method of Moments for Numerical Analysis of Charged Metallic Bodies . . . . . . 33
2 Electrostatic Field in Dielectrics 41
2.1 Characterization of Dielectric Materials . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Dielectric—Dielectric Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Poisson’s and Laplace’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4 Finite-Difference Method for Numerical Solution of Laplace’s Equation . . . . . . . 51
2.5 Evaluation of Capacitances of Capacitors and Transmission Lines . . . . . . . . . . 59
2.6 Capacitors with Inhomogeneous Dielectrics . . . . . . . . . . . . . . . . . . . . . . 69
2.7 Dielectric Breakdown in Electrostatic Systems . . . . . . . . . . . . . . . . . . . . . 70
3 Steady Electric Currents 73
3.1 Continuity Equation, Conductivity, and Ohm’s Law in Local Form . . . . . . . . . 73
3.2 Boundary Conditions for Steady Currents . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Relaxation Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4 Resistance and Ohm’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4 Magnetostatic Field in Free Space 86
4.1 Magnetic Force and Magnetic Flux Density Vector . . . . . . . . . . . . . . . . . . 86
4.2 Magnetic Field Computation Using Biot—Savart Law . . . . . . . . . . . . . . . . . 92
4.3 Ampere’s Law in Integral Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Differential Form of Ampere’s Law, Curl . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Magnetic Vector Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.6 Magnetic Dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5 Magnetostatic Field in Material Media 106
5.1 Permeability of Magnetic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Boundary Conditions for the Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Magnetic Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
vi Contents, Preface, and m Files on Instructor Resources
6 Time-Varying Electromagnetic Field 118
6.1 Faraday’s Law of Electromagnetic Induction . . . . . . . . . . . . . . . . . . . . . . 118
6.2 Self-Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3 Mutual Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Displacement Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.5 Maxwell’s Equations for the Time-Varying Electromagnetic Field . . . . . . . . . . 130
6.6 Boundary Conditions for the Time-Varying Electromagnetic Field . . . . . . . . . . 132
6.7 Time-Harmonic Electromagnetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.8 Complex Representatives of Time-Harmonic Field and Circuit Quantities . . . . . 137
6.9 Instantaneous and Complex Poynting Vector . . . . . .
Branislav M. Notaroš received the Dipl.Ing. (B.Sc.), M.Sc., and Ph.D. degrees in electrical engineering from the University of Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and 1995, respectively. From 1996 to 1998, he was an Assistant Professor in the Department of Electrical Engineering at the University of Belgrade, and before that, from 1989 to 1996, a Teaching and Research Assistant (faculty position) in the same department. He spent the 1998-1999 academic year as a Research Associate at the University of Colorado at Boulder. He was an Assistant Professor, from 1999 to 2004, and Associate Professor (with Tenure), from 2004 to 2006, in the Department of Electrical and Computer Engineering at the University of Massachusetts Dartmouth. He is currently an Associate Professor (with Tenure) of electrical and computer engineering at Colorado State University.
Research activities of Prof. Notaroš are in applied computational electromagnetics, antennas, and microwaves. His research publications so far include 22 journal papers, 58 conference papers and abstracts, and a chapter in a monograph. His main contributions are in higher order computational electromagnetic techniques based on the method of moments, finite element method, physical optics, domain decomposition method, and hybrid methods as applied to modeling and design of antennas and microwave circuits and devices for wireless technology. He has produced several Ph.D. and M.S. graduates. Prof. Notaroš’ teaching activities are in theoretical, computational, and applied electromagnetics. He is the author of the Electromagnetics Concept Inventory (EMCI), an assessment tool for electromagnetic fields and waves. He has published 3 workbooks in electromagnetics and in fundamentals of electrical engineering (basic circuits and fields). He has taught a variety of undergraduate and graduate courses in electromagnetic theory, antennas and propagation, computational electromagnetics, fundamentals of electrical engineering, electromagnetic compatibility, and signal integrity. He has been consistently extremely highly rated by his students in all courses, and most notably in undergraduate electromagnetics courses (even though undergraduates generally find these mandatory courses quite difficult and challenging).
Dr. Notaroš was the recipient of the 2005 IEEE MTT-S Microwave Prize, Microwave Theory and Techniques Society of the Institute of Electrical and Electronics Engineers (best-paper award for IEEE Transactions on MTT), 1999 IEE Marconi Premium, Institution of Electrical Engineers, London, UK (best-paper award for IEE Proceedings on Microwaves, Antennas and Propagation), 1999 URSI Young Scientist Award, International Union of Radio Science, Toronto, Canada, 2005 UMD Scholar of the Year Award, University of Massachusetts Dartmouth, 2004 Dean’s Recognition Award, College of Engineering, University of Massachusetts Dartmouth, 2009 and 2010 ECE Excellence in Teaching Awards (by nominations and votes of ECE students), Colorado State University, and 2010 George T. Abell Outstanding Teaching and Service Faculty Award, College of Engineering, Colorado State University.
Need help? Get in touch