Calculus & Its Applications, 14th edition

Published by Pearson (December 11, 2020) © 2018

  • Larry J. Goldstein Goldstein Educational Technologies
  • David C. Lay University of Maryland
  • David I. Schneider University of Maryland
  • Nakhle H. Asmar University of Missouri, Columbia

eTextbook on Pearson+

ISBN-13: 9780137400096 (2020 update)

eTextbook rental includes

  • Instant access to eTextbook
  • Search, highlight, and notes
  • Create flashcards
Products list

Details

  • Loose-leaf, 3-hole-punched pages
Products list

Access details

  • Pearson+ eTextbook with study tools
  • Instant access once purchased
  • Register with a Course ID, a link from your instructor or an LMS link (Blackboardâ„¢, Canvasâ„¢, Moodle or D2L®)

Features

  • Interactive digital learning experience
  • Help when and where you need it
  • Instant feedback on assignments
  • Apps and study tools

For one- or two-semester courses in Calculus for students majoring in business, social sciences, and life sciences.

Intuition before Formality

Calculus & Its Applications builds intuition with key concepts of calculus before the analytical material. For example, the authors explain the derivative geometrically before they present limits, and they introduce the definite integral intuitively via the notion of net change before they discuss Riemann sums. The strategic organization of topics makes it easy to adjust the level of theoretical material covered. The significant applications introduced early in the course serve to motivate students and make the mathematics more accessible. Another unique aspect of the text is its intuitive use of differential equations to model a variety of phenomena in Chapter 5, which addresses applications of exponential and logarithmic functions.

Time-tested, comprehensive exercise sets are flexible enough to align with each instructor’s needs, and new exercises and resources in MyLab™ Math help develop not only skills, but also conceptual understanding, visualization, and applications. The 14th Edition features updated exercises, applications, and technology coverage, presenting calculus in an intuitive yet intellectually satisfying way.

Also available with MyLab Math

MyLab™ Math is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Within its structured environment, students practice what they learn, test their understanding, and pursue a personalized study plan that helps them absorb course material and understand difficult concepts. In the new edition, MyLab Math has expanded to include a suite of new videos, Interactive Figures, exercises that require step-by-step solutions, conceptual questions, calculator support, and more.

Students, if interested in purchasing this title with MyLab Math, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.

0. Functions

0.1 Functions and Their Graphs

0.2 Some Important Functions

0.3 The Algebra of Functions

0.4 Zeros of Functions - The Quadratic Formula and Factoring

0.5 Exponents and Power Functions

0.6 Functions and Graphs in Applications

 

1. The Derivative

1.1 The Slope of a Straight Line

1.2 The Slope of a Curve at a Point

1.3 The Derivative and Limits

1.4 Limits and the Derivative

1.5 Differentiability and Continuity

1.6 Some Rules for Differentiation

1.7 More About Derivatives

1.8 The Derivative as a Rate of Change

 

2. Applications of the Derivative

2.1 Describing Graphs of Functions

2.2 The First and Second Derivative Rules

2.3 The First and Section Derivative Tests and Curve Sketching

2.4 Curve Sketching (Conclusion)

2.5 Optimization Problems

2.6 Further Optimization Problems

2.7 Applications of Derivatives to Business and Economics

 

3. Techniques of Differentiation

3.1 The Product and Quotient Rules

3.2 The Chain Rule

3.3 Implicit Differentiation and Related Rates

 

4. The Exponential and Natural Logarithm Functions

4.1 Exponential Functions

4.2 The Exponential Function ex

4.3 Differentiation of Exponential Functions

4.4 The Natural Logarithm Function

4.5 The Derivative of ln x

4.6 Properties of the Natural Logarithm Function

 

5. Applications of the Exponential and Natural Logarithm Functions

5.1 Exponential Growth and Decay

5.2 Compound Interest

5.3. Applications of the Natural Logarithm Function to Economics

5.4. Further Exponential Models

 

6. The Definite Integral

6.1 Antidifferentiation

6.2 The Definite Integral and Net Change of a Function

6.3 The Definite Integral and Area Under a Graph

6.4 Areas in the xy-Plane

6.5 Applications of the Definite Integral

 

7. Functions of Several Variables

7.1 Examples of Functions of Several Variables

7.2 Partial Derivatives

7.3 Maxima and Minima of Functions of Several Variables

7.4 Lagrange Multipliers and Constrained Optimization

7.5 The Method of Least Squares

7.6 Double Integrals

 

8. The Trigonometric Functions

8.1 Radian Measure of Angles

8.2 The Sine and the Cosine

8.3 Differentiation and Integration of sin t and cos t

8.4 The Tangent and Other Trigonometric Functions

 

9. Techniques of Integration

9.1 Integration by Substitution

9.2 Integration by Parts

9.3 Evaluation of Definite Integrals

9.4 Approximation of Definite Integrals

9.5 Some Applications of the Integral

9.6 Improper Integrals

 

10. Differential Equations

10.1 Solutions of Differential Equations

10.2 Separation of Variables

10.3 First-Order Linear Differential Equations

10.4 Applications of First-Order Linear Differential Equations

10.5 Graphing Solutions of Differential Equations

10.6 Applications of Differential Equations

10.7 Numerical Solution of Differential Equations

 

11. Taylor Polynomials and Infinite Series

11.1 Taylor Polynomials

11.2 The Newton-Raphson Algorithm

11.3 Infinite Series

11.4 Series with Positive Terms

11.5 Taylor Series

 

12. Probability and Calculus

12.1 Discrete Random Variables

12.2 Continuous Random Variables

12.3 Expected Value and Variance

12.4 Exponential and Normal Random Variables

12.5 Poisson and Geometric Random Variables

This fixed-layout publication may lack compatibility with assistive technologies. Images in the publication lack alternative text descriptions. The publication does not support text reflow. The publication contains no content hazards known to cause adverse physical reactions.

Need help? Get in touch