Pearson+

Introduction to Analysis, An, 4th edition

  • William R. Wade
loading

  • Find it fast
    Find it fast

    Quickly navigate your eTextbook with search

  • Stay organized
    Stay organized

    Access all your eTextbooks in one place

  • Easily continue access
    Easily continue access

    Keep learning with auto-renew

An Introduction to Analysis, 4th Edition prepares you for future courses that use analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. It is designed to challenge advanced students while encouraging and helping those at other levels. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing you the motivation behind the mathematics and enabling you to construct your own proofs.

This title is part of the Pearson Modern Classics series; Pearson Modern Classics are acclaimed titles for advanced statistics and mathematics at a value price.  

Published by Pearson (July 1st 2022) - Copyright © 2023

ISBN-13: 9780137981663

Subject: Advanced Math

Category: Real Analysis

Preface

Part I. ONE-DIMENSIONAL THEORY

 

1. The Real Number System

1.1 Introduction

1.2 Ordered field axioms

1.3 Completeness Axiom

1.4 Mathematical Induction

1.5 Inverse functions and images

1.6 Countable and uncountable sets

 

2. Sequences in R

2.1 Limits of sequences

2.2 Limit theorems

2.3 Bolzano-Weierstrass Theorem

2.4 Cauchy sequences

*2.5 Limits supremum and infimum

 

3. Continuity on R

3.1 Two-sided limits

3.2 One-sided limits and limits at infinity

3.3 Continuity

3.4 Uniform continuity

 

4. Differentiability on R

4.1 The derivative

4.2 Differentiability theorems

4.3 The Mean Value Theorem

4.4 Taylor's Theorem and l'Hôpital's Rule

4.5 Inverse function theorems

 

5 Integrability on R

5.1 The Riemann integral

5.2 Riemann sums

5.3 The Fundamental Theorem of Calculus

5.4 Improper Riemann integration

*5.5 Functions of bounded variation

*5.6 Convex functions

 

6. Infinite Series of Real Numbers

6.1 Introduction

6.2 Series with nonnegative terms

6.3 Absolute convergence

6.4 Alternating series

*6.5 Estimation of series

*6.6 Additional tests

 

7. Infinite Series of Functions

7.1 Uniform convergence of sequences

7.2 Uniform convergence of series

7.3 Power series

7.4 Analytic functions

*7.5 Applications

 

Part II. MULTIDIMENSIONAL THEORY

 

8. Euclidean Spaces

8.1 Algebraic structure

8.2 Planes and linear transformations

8.3 Topology of Rn

8.4 Interior, closure, boundary

 

9. Convergence in Rn

9.1 Limits of sequences

9.2 Heine-Borel Theorem

9.3 Limits of functions

9.4 Continuous functions

*9.5 Compact sets

*9.6 Applications

 

10. Metric Spaces

10.1 Introduction

10.2 Limits of functions

10.3 Interior, closure, boundary

10.4 Compact sets

10.5 Connected sets

10.6 Continuous functions

10.7 Stone-Weierstrass Theorem

 

11. Differentiability on Rn

11.1 Partial derivatives and partial integrals

11.2 The definition of differentiability

11.3 Derivatives, differentials, and tangent planes

11.4 The Chain Rule

11.5 The Mean Value Theorem and Taylor's Formula

11.6 The Inverse Function Theorem

*11.7 Optimization

 

12. Integration on Rn

12.1 Jordan regions

12.2 Riemann integration on Jordan regions

12.3 Iterated integrals

12.4 Change of variables

*12.5 Partitions of unity

*12.6 The gamma function and volume

 

13. Fundamental Theorems of Vector Calculus

13.1 Curves

13.2 Oriented curves

13.3 Surfaces

13.4 Oriented surfaces

13.5 Theorems of Green and Gauss

13.6 Stokes's Theorem

 

*14. Fourier Series

*14.1 Introduction

*14.2 Summability of Fourier series

*14.3 Growth of Fourier coefficients

*14.4 Convergence of Fourier series

*14.5 Uniqueness

 

Appendices

A. Algebraic laws

B. Trigonometry

C. Matrices and determinants

D. Quadric surfaces

E. Vector calculus and physics

F. Equivalence relations

 

References

Answers and Hints to Exercises

Subject Index

Symbol Index

 

*Enrichment section