Creating engaging distance learning experiences for students
As educators, we know what student engagement looks like in the classroom. Students are focused on their work in front of them, they are collaborating with their peers, they are asking good questions, creativity is flowing… But now that things have moved online, what does engagement look like? Let’s start by asking ourselves what makes something engaging, and then explore some tools we can use in a digital classroom.
What makes something engaging?
A lot of research has been done around student engagement. Primarily, engagement revolves around student ownership of the material being presented. I know what you’re thinking. “I have a curriculum with standards I have to follow! There’s no room for student choice!” While you may be partially right, there are places in every course that allow for more student choice and input.
In an informal survey of my students, the feedback regarding what makes a class engaging is varied; however, there are a lot of commonalities. Students want to be able to pursue their own interests, feel heard and included, and know that they are supported when taking risks. They want teachers who are not too strict but are fair in their handling of the classroom. Even when the material doesn’t resonate with a student’s interest, teacher enthusiasm can change a mundane course into a potential major.
Daniel Pink, the author of the book Drive1, states that three conditions need to be met to trigger engagement.
- Autonomy: Give students choice to work on a project that relates to the curriculum but is also interesting on a personal level for the student.
- Mastery: The task itself can’t be too challenging or too easy. One creates frustration and the other boredom. The task should be somewhere in what is commonly referred to as the “Goldilocks Zone,” where the difficulty is just right for the learner.
- Purpose: The student has to be able to link what they are doing to the wider world. Why should they know what you are teaching? Make the material relevant and you will get more student buy-in.
Instructional methods to increase engagement
Now that we know what student engagement looks like, let’s look at a few instructional methods that can improve our curriculum and retention. While creating your course, don’t worry about including all these options. Just choose a few to start and then ask for student feedback regarding what they liked and what they want to see changed next time.
Real-world examples
In each lab report I assign, I ask that students relate the concept or technique to a real-world example. The identification of an unknown salt would be helpful in cases with contaminated water and is a critical skill to master. Here is an example of a student response from a lab where they determined the density of an element by graphical interpolation.
Example
“Although this particular lab did not yield extremely accurate results, there are still definite real-world applications for using interpolation, such as to find the density or other measurable qualities of elements. It would be especially useful for finding properties (such as density) of the man-made elements which have too short of a half-life to be effectively examined or measured for mass and volume.”
Project-based learning
Project-based learning (PBL) is where students complete a long-term assignment to solve a problem or answer a question. For more information about PBL, click here.
In my lab class, I try to make this an authentic question that students will need to make a recommendation on. As shown in the example to the left, here is the introduction to a basic percent composition of a mixture lab.
Example
We are Minuteman Wallboard Co. and we have a severe problem. As you know, the inside layer of wallboard is made from magnesium sulfate heptahydrate. Our feeder company inadvertently gave us an unknown amount of calcium sulfate dihydrate in one of its shipments and this was mixed in with the magnesium sulfate heptahydrate before processing it.
Our advisory board has said that there is no reaction between the two compounds, however if the wallboard has 15% by mass or greater of calcium sulfate dihydrate in the initial mix before processing, the strength and durability of the wallboard will be compromised.
We have already made over $450,000 worth of wallboard stock from this suspected material. We do not want to give this to any of our retailers until we know if the mix had less than 15.0% by mass of calcium sulfate dihydrate. We are supplying you with a sample of the original mix before processing and would appreciate it if your company will help us solve our problem.