Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and The Cloud, 1st edition

Published by Pearson (July 14, 2021) © 2020

  • Paul Deitel Deitel & Associates, Inc.
  • Harvey M. Deitel Deitel & Associates, Inc.
Products list

Access details

  • Instant access once purchased
  • Anytime, anywhere learning with the Pearson+ app

Features

  • Search, highlight and take notes
  • Watch embedded videos with select titles
  • Easily create flashcards
Products list

Details

  • A print text

This product is expected to ship within 3-6 business days for US and 5-10 business days for Canadian customers.

Introduction to Python for Computer Science and Data Science takes a unique, modular approach to teaching and learning introductory Python programming that is relevant for both computer science and data science audiences. The Deitels cover the most current topics and applications to prepare you for your career. Jupyter Notebooks supplements provide opportunities to test your programming skills. Fully implemented case studies in artificial intelligence technologies and big data let you apply your knowledge to interesting projects in the business, industry, government and academia sectors. Hundreds of hands-on examples, exercises and projects offer a challenging and entertaining introduction to Python and data science.

PART 1

  • CS: Python Fundamentals Quickstart
  • CS 1. Introduction to Computers and Python
  • DS Intro: AI–at the Intersection of CS and DS
  • CS 2. Introduction to Python Programming
  • DS Intro: Basic Descriptive Stats
  • CS 3. Control Statements and Program Development
  • DS Intro: Measures of Central Tendency—Mean, Median, Mode
  • CS 4. Functions
  • DS Intro: Basic Statistics— Measures of Dispersion
  • CS 5. Lists and Tuples
  • DS Intro: Simulation and Static Visualization

PART 2

  • CS: Python Data Structures, Strings and Files
  • CS 6. Dictionaries and Sets
  • DS Intro: Simulation and Dynamic Visualization
  • CS 7. Array-Oriented Programming with NumPy, High-Performance NumPy Arrays
  • DS Intro: Pandas Series and DataFrames
  • CS 8. Strings: A Deeper Look Includes Regular Expressions
  • DS Intro: Pandas, Regular Expressions and Data Wrangling
  • CS 9. Files and Exceptions
  • DS Intro: Loading Datasets from CSV Files into Pandas DataFrames

PART 3

  • CS: Python High-End Topics
  • CS 10. Object-Oriented Programming
  • DS Intro: Time Series and Simple Linear Regression
  • CS 11. Computer Science Thinking: Recursion, Searching, Sorting and Big O
  • CS and DS Other Topics Blog

PART 4 AI, Big Data and Cloud Case Studies

  • DS 12. Natural Language Processing (NLP), Web Scraping in the Exercises
  • DS 13. Data Mining Twitter®: Sentiment Analysis, JSON and Web Services
  • DS 14. IBM Watson® and Cognitive Computing
  • DS 15. Machine Learning: Classification, Regression and Clustering
  • DS 16. Deep Learning Convolutional and Recurrent Neural Networks; Reinforcement Learning in the Exercises
  • DS 17. Big Data: Hadoop®, Sparkâ„¢, NoSQL and IoT

This publication contains markup to enable structural navigation and compatibility with assistive technologies. Images in the publication are fully described. The publication supports text reflow, is screen-reader friendly, and contains no content hazards known to cause adverse physical reactions.

Need help? Get in touch