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Motion, from the simple to the complex, is a fundamental part of everyday life. The 
motion of a gymnast performing a floor routine is a complex form of motion. An 
Olympic snowboarder competing in a half-pipe event also exhibits a complex form 
of motion. Simpler examples include a skier travelling in a straight line down a ski 
run, a train pulling into a station and a swimmer completing a lap of a pool.

Science Understanding
Linear motion and force
• change (final – initial) in a variable is represented by the symbol Δ, e.g. ∆t t tf i= −
• displacement is defined as the change in position of an object, including applying 

the relationship

s x x xf i= = −∆

• velocity is defined as the rate of change in displacement of an object, including 
applying the relationship
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• uniformly accelerated motion (a is constant) is described in terms of relationships 
between measurable scalar and vector quantities, such as displacement, velocity 
and time, including applying the relationships 
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• motion can be represented graphically to describe linear motion, including the 
determination, manipulation, and use of gradients of curves and areas under 
graphs of 
• displacement–time 
• velocity–time 
• acceleration–time 

• vertical motion is analysed by assuming the acceleration due to gravity is constant 
near Earth’s surface.
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2 UNIT 1   |   MOTION, FORCES AND ENERGY

3.1 Displacement, speed and velocity
In order to analyse and communicate ideas about motion, it is important to 
understand the terms used to describe motion, even in its simplest form. In this 
section you will learn about some of the terms used to describe straight-line motion, 
such as position, distance, displacement, speed and velocity.

CENTRE OF MASS
When analysing motion, things are often more complicated than they first appear. 
As a freestyle swimmer travels at a constant speed of 2.00 m s−1, their head and torso 
move forwards at this speed. The motion of their arms, however, is more complex. 
At times their arms move forwards through the air faster than 2.00 m s−1, and at 
other times they are actually moving backwards through the water.

It is beyond the scope of this course to analyse such a complex motion. However, 
the motion of the swimmer can be simplified by treating the swimmer as a simple 
object located at a single point called the centre of mass or centre of gravity. The 
centre of mass is the balance point of an object. For a person, the centre of mass is 
located near the waist. The centres of mass of some everyday objects are shown in 
Figure 3.1.1. The concept of centre of mass and centre of gravity is discussed in 
more detail in Year 12.

POSITION, DISTANCE AND DISPLACEMENT
Position, distance and displacement are three essential concepts for analysing 
straight-line motion and understanding how objects move.

Position
One important term to understand when analysing straight-line motion is position, 
which is given the symbol x.

a

b

c

d

FIGURE 3.1.1 The centre of mass of each object 
is indicated by a cross.

• Position, x, describes the location of an object at a certain point in time 
with respect to the origin.

• Position is a vector quantity and therefore requires a direction.
•  Change in position, Δx, is the difference between the final position and the 

initial position, x xf i− .

Consider a swimmer, Sophie, doing laps in a 50.0 m pool, as shown in Figure 3.1.2. 
To simplify her motion, Sophie is treated as a simple point object. The pool can be 
treated as a one-dimensional number line, with the starting block as the origin. The 
direction to the right of the starting block is taken to be positive.

Sophie’s position as she is warming up behind the starting block in Figure 3.1.2a 
is x = −10.0 m. The negative sign indicates the direction from the origin; that is, to the 
left. Her position could also be given as x = 10.0 m to the left of the starting block.

At the starting block (Figure 3.1.2b), Sophie’s position is x = 0.0 m. After 
swimming half the length of the pool, her centre of mass is at a position where  
x = +25.0 m or 25.0 m to the right of the origin (Figure 3.1.2c).

–10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 m
Position

a

b

c

–10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 m
Position

–10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 m
Position

FIGURE 3.1.2 The position, x, of the swimmer is 
given with reference to the starting block.  
(a) While warming up, Sophie is at x = −10.0 m. 
(b) When she is on the starting block, her 
position is at x = 0.0 m. (c) After swimming for 
a short time, her centre of mass is at a position 
where x = +25.0 m.
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3CHAPTER 3   |   LINEAR MOTION

Distance travelled
Position, x, describes where an object is at a certain point in time. However, distance 
travelled, d, is how far a body travels during a journey.

For example, if Sophie completes three lengths of the pool, the distance, d, 
travelled during her swim will be 50.0 + 50.0 + 50.0 = 150.0 m.

The distance travelled is not affected by the direction of the motion; that is, 
the distance travelled by an object always increases as it moves, regardless of its 
direction. The tripmeter or odometer of a car or bike, for example, measures 
distance travelled. To better understand this, consider tying one end of a spool of 
string to your letterbox and letting it unravel behind you as you walk to school. The 
length of the unwound string would represent the distance you have travelled.

Displacement
Displacement, s, is defined as the change in position, Δx, of an object. Displacement 
considers only the initial or starting position, xi, and the final or finishing position, 
xf  ; the route taken between these two points has no effect on displacement. The sign 
of the displacement indicates the direction in which the position has changed from 
the start to the end.

Consider the example of Sophie completing one length of the pool. During her 
swim, the distance travelled is 50.0 m. Her final position, xf , is +50.0 m and her 
initial position, xf , is 0.0 m. Her displacement can therefore be shown as:

 s = final position − initial position 
 s = xf  − xi

 s = (+50.0) − (0.0)  s = +50.0 m or 50.0 m in a positive direction.
Notice that magnitude, units and direction are required for a vector quantity. 

The distance will be equal to the magnitude of displacement only if the body is 
moving in a straight line and does not change direction. If Sophie swims two lengths, 
her distance travelled will be 100.0 m: 50.0 m out and 50.0 m back. However, her 
displacement during this swim will be:

  s = final position − initial position
  s = (0.0) − (0.0)
  s = 0.0 m
Even though Sophie has swum 100.0 m, the displacement is zero because her 

initial and final positions are the same.
The above formula for displacement is useful if you already know the initial 

and final positions of a body’s motion. An alternative method to determine total 
displacement, if you know the displacement of each section of the motion, is to sum 
or add up the individual displacements for each section of motion.

It is important to remember that displacement is a vector and so, when adding 
displacements, you must obey the rules of vector addition (discussed in Chapter 2).

•  Distance travelled, d, describes the length of the path covered during an 
object’s entire journey.

•  Distance travelled is a scalar quantity and is measured in metres (m).

•  Change (final – initial) in a variable is represented by the symbol Δ.
• Displacement, s, is the change in position of an object in a given direction, s = Δx.
• Displacement = final position − initial position or s = Δx = xf  − xi.
• Displacement is a vector quantity and is measured in metres (m).

total displacement = sum of individual displacements, or s = s1 + s2 + s3 + ... 
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4 UNIT 1   |   MOTION, FORCES AND ENERGY

In the example above, therefore, in which Sophie completed two laps of the pool, 
overall displacement could also have been calculated by adding the displacement of 
each lap:

s = sum of displacements for each lap
s = 50.0 m in the positive direction + 50.0 m in the negative direction
s = (50.0) + (−50.0)
s = 0.0 m

PHYSICS IN ACTION  

Timing and false starts in 
athletics
Until 1964, all timing of events at the Olympic Games was 
recorded by handheld stopwatches (Figure 3.1.3). The 
reaction times of the judges meant an uncertainty of 0.2 s 
for any measurement. An electronic quartz timing system 
introduced in 1964 improved accuracy to 0.01 s, but in 
close finishes the judges still had to wait for a photograph 
of the finish before they could announce the places.

FIGURE 3.1.3 Using stopwatches to time a swimming race at the 1960 
Olympic Games in Rome.

The current timing system used in athletics is a vertical 
line-scanning video system (VLSV). Introduced in 1991, 

this electronic timing system is completely automatic. 
The starting pistol triggers a computer to begin timing. 
At the finish line, a high-speed video camera records the 
image of each athlete and indicates the time at which 
each one crosses the line. This system enables the times 
of all athletes in the race to be precisely measured to  
one-thousandth of a second.

Another feature of this system is that it indicates when 
a runner ‘breaks’ at the start of the race. Each starting 
block is connected by electronic cables to the timing 
computer and a pressure sensor indicates if a runner has 
left the blocks early (Figure 3.1.4). A reaction time of 0.10 s 
has been incorporated into the system since 2002. This 
ensures that a runner has not anticipated the pistol. It also 
means that a runner can still commit a false start even 
if their start was after the pistol. A start that is less than 
0.10 s after the pistol is registered as false.

FIGURE 3.1.4 Starting blocks are fitted with pressure sensors to detect 
false starts.
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5CHAPTER 3   |   LINEAR MOTION

SPEED AND VELOCITY
For thousands of years, humans have tried to travel at ever greater speeds. This 
desire has contributed to the development of all sorts of competitive activities, as 
well as major advances in engineering and design. World records for some of these 
pursuits are given in Table 3.1.1.

TABLE 3.1.1 World record speeds for a variety of sports or modes of transport  
(as of June 2024).

Activity World record speed (m s−1) World record speed (km h−1)

street luge 45.522 163.88

maglev train 128 460

tennis serve 73.06 263.0

waterskiing (barefoot) 60.678 218.44

cricket delivery 44.81 161.3

electric formula 1 89.4 322

Speed and velocity are both quantities that give an indication of how quickly 
the position of an object is changing. Both terms are in common use and are often 
assumed to have the same meaning. In physics, however, these two terms have 
different definitions.

Instantaneous speed and velocity
Instantaneous speed and instantaneous velocity give a measure of how fast 
something is moving at a particular point in time. The speedometer on a car or bike 
indicates instantaneous speed.

If a speeding car is travelling north and is detected on a police radar gun at 
150 km h−1, it indicates that this car’s instantaneous speed is 150 km h−1, while its 
instantaneous velocity is 150 km h−1 north. Notice that the instantaneous speed is 
equal to the magnitude of the instantaneous velocity.

Average speed and velocity
Average speed and average velocity both give an indication of how fast an object is 
moving over a period of time.

average speed, v
d
tav

distance travelled
time taken

= =
∆

 

average velocity, v
x
t

x x
t t
f i

f i
av

change in displacement
time taken

= = =
−
−

∆
∆

 

A direction (such as north, south, up, down, left, right, positive, negative) must be 
given when describing a velocity. The direction will always be the same as that of 
the displacement.

For example, the average speed of a car that takes 30.0 minutes to travel 20.0 km 
from Perth to Sorrento is 40.0 km h−1. However, this does not mean that the car 
travelled the whole distance at this speed. In fact, it is more likely that the car was 
moving at 60.0 km h−1 for a significant amount of time, while for some of the time it 
may not be moving at all.

Like the relationship between distance and displacement, average speed will be 
equal to the magnitude of average velocity only if the body is moving in a straight line 
and does not change direction. In a race around a circular track like the velodrome 
shown in Figure 3.1.5, regardless of the average speed for one complete lap, the 
magnitude of the average velocity at the end of that lap will be zero because the 
displacement is zero.

•  Speed, v, is defined in terms 
of the rate, Δt, at which the 
distance, d, is travelled. Like 
distance, speed is a scalar 
quantity. A direction is not 
required when describing the 
speed of an object.

•  Velocity, v, is defined in terms 
of the rate, Δt, at which 
displacement, s, changes 
and so is a vector quantity. 
A direction should always be 
given with a velocity.

•  The SI unit for speed and 
velocity is metres per second 
(m s−1), but kilometres 
per hour (km h−1) is also 
commonly used.

FIGURE 3.1.5 Anna Meares won the UCI world 
championship in 2013. She rode 500 m in a 
world record time of 32.836 s. Her average 
speed was 55.6 km h−1 but her average velocity 
was zero at the start–finish line.
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6 UNIT 1   |   MOTION, FORCES AND ENERGY

EXTENSION

How police measure the speeds of cars
Road accidents cause the deaths of about 1200 people 
in Australia each year and many times this number are 
seriously injured. Numerous steps have been taken to 
reduce the number of road fatalities. Some of these 
include random alcohol and drug testing, speed cameras, 
mandatory wearing of bicycle helmets and the zero blood 
alcohol level for probationary drivers.

One of the main causes of road trauma is speeding. In 
their efforts to combat speeding motorists, police employ 
a variety of speed-measuring devices. One such device is 
shown in Figure 3.1.6.

Speed camera radar
Camera radar units are usually placed in unmarked vehicles 
parked by the side of the road. These units emit a radar 
signal frequency of 24.15 GHz (2.415 × 1010 Hz). The radar 
antenna has a parabolic reflector that enables the unit to 
produce a directional radar beam that is 5° wide, allowing 
individual vehicles to be targeted. The radar range and 
field of vision for a camera is shown in Figure 3.1.7. The 
radar signal allows speeds to be determined by the Doppler 
effect, where the reflected radar signal from an approaching 
vehicle has a higher frequency than the original signal. 
Similarly, the reflected signal from a receding vehicle has a 
lower frequency. This change in frequency or ‘Doppler shift’ 
is processed by the unit and gives a measurement of the 
instantaneous speed of the target vehicle.

radar range
field of vision of the camera

FIGURE 3.1.7 Diagram showing the visual range of a speed camera.

Camera radar units are capable of targeting a 
single vehicle up to 1.2 km away. In traffic, the units 
can distinguish between individual cars and take 
two photographs per second. The photographs and 
infringement notices are mailed to the offending motorists.

Laser speed guns
Speed guns are used by police to obtain an instant measure 
of the speed of an approaching or receding vehicle. The unit 
is usually handheld and is aimed directly at a vehicle using a 
target sight. It emits a pulse of infra-red radiation frequency 
of 331 THz (3.31 × 1014 Hz). As with camera radar units, 
the speed is determined by the Doppler shift produced by 
the target vehicle. The infra-red pulse is very narrow and 
directional, being just 0.17° wide. This allows vehicles to be 
targeted with great precision. Handheld units can be used at 
distances up to 800 m. If the vehicle’s speed registers over 
the limit, police are likely to pull the driver over.

Fixed speed cameras
Fixed speed cameras obtain their readings by using a 
system of three strips with piezoelectric sensors in them 
across the road (see Figure 3.1.8). The strips respond 
to the pressure exerted as the car drives over them and 
create an electrical pulse that is detected by the unit. 
By knowing the precise distance between the strips and 
measuring the time that the car takes to travel across them, 
the speed of the car can be determined. This is actually 
measuring the average speed of the car, but by placing the 
strips close together the average speed gives a very good 
approximation of the instantaneous speed.

Set distance

1st sensor 2nd sensor 3rd sensor

FIGURE 3.1.8 Fixed speed cameras record the speed of a car twice by 
measuring the time the car takes to travel over a series of three sensor 
strips embedded in the roadway.

 FIGURE 3.1.6 
Speed cameras 
on poles.
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7CHAPTER 3   |   LINEAR MOTION

Converting km h−1 to m s−1

You should be familiar with 100.0 km h−1 as it is the speed limit for most freeways 
and country roads in Australia. Cars that maintain this speed would travel 100.0 km 
in 1.00 hour. Since there are 1000 m in 1.00 km and 3600 s in 1.00 hour (60.0 s × 
60.0 min), this is the same as travelling 100 000 m in 3600 s.

100.0 km h−1 = 100.0 × 1000 m h−1

   = 100 000 m h−1

  =  100 000
3600   ms−1

  = 27.8 m s−1

So, km h−1 can be converted to m s−1 by multiplying by 1000
3600

 (or simply dividing 
by 3.60).

Converting m s−1 to km h−1

A champion Olympic sprinter can run at an average speed of close to 10.0 m s−1. 
Each second, the athlete will travel approximately 10.0 m. At this rate, in 1.00 hour 
the athlete would travel 10.0 × 3600 = 36 000 m = 36.0 km.

 10.0 m s−1 = 10.0 × 3600 m h−1

    = 36 000 m h−1

    
   = 

 36 000
1000  km h−1

    = 36.0 km h−1

So, m s−1 can be converted to km h−1 by multiplying by 3600
1000

 (or simply 
multiplying by 3.60).

When converting a speed from one unit to another, it is important to compare the 
speeds to ensure that your answers make sense. To do so, a good rule to remember is 
that the number in front of km h−1 is always larger than the number in front of m s−1. 
The diagram in Figure 3.1.9 summarises the conversion between units for speed.

PHYSICSFILE

Reaction time
Drivers are often distracted by loud 
music or phone calls. These distractions 
result in many accidents on the road. 
If cars are moving at high speeds, they 
can travel a considerable distance in the 
short time that the driver takes just to 
recognise a hazard and apply the brakes. 
This is known as the reaction distance, 
which adds to the stopping distance. 
Lower speeds and short reaction times 
are very important in helping all road 
users to avoid collisions. This is easy to 
understand given that distance is directly 
proportional to both speed and time,  
d = vΔt.

÷ 3.60

× 3.60

km h–1 m s–1

FIGURE 3.1.9 Rules for converting 
between m s−1 and km h−1.

PHYSICS IN ACTION  

Alternative units for speed and distance
Metres per second is the standard unit for measuring speed 
as it is derived from the standard unit for distance (metres) 
and the standard unit for time (seconds). However, alternative 
units are often used that better suit certain applications.

The speed of a boat is usually measured in knots, 
where 1.00 knot = 0.510 m s−1. This unit originated in the 
nineteenth century when the speed of sailing ships would 
be measured by allowing a rope, with knots tied at regular 
intervals, to be dragged by the water through a sailor’s 
hands. By counting the number of knots that passed 
through the sailor’s hands, and measuring the time taken for 
this to happen, the average speed formula could be applied 
to estimate the speed of the ship.

The speed of very fast jet planes, such as the one in 
Figure 3.1.10, can be measured in Mach numbers, which 
are related to the speed of sound. One Mach (referred to as 
Mach 1) is equal to the speed of sound, which is 340 m s−1. 
Mach 2 is equal to 680 m s−1, or twice the speed of sound.

The light-year is an alternative unit for measuring distance. 
The speed of light in a vacuum is 3.00 × 108 m s−1, which is 
three hundred million metres every second. One light-year is 

the distance that light travels in 1 year, which is  
3.15576 × 107 s. Because distances between objects in 
the universe are so large, astronomers use the light-year to 
measure distances in space. For example, it takes  
4.24 years for light to travel 4.014 × 1016 m to us from 
Proxima Centauri, the nearest star to Earth other than our 
own star, Sol (the Sun). It is much easier to say that the 
distance from Earth to our nearest star is 4.24 light-years 
than it is to use units that work on a smaller scale. Light takes 
approximately 8.5 minutes to travel from the Sun to Earth, so 
it could be said that the Sun is 8.5 light-minutes away.

FIGURE 3.1.10 Modern fighter aeroplanes can fly at speeds above Mach 1.
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8 UNIT 1   |   MOTION, FORCES AND ENERGY

Worked example 3.1.1

CALCULATING VELOCITY AND CONVERTING UNITS

Sam is an athlete performing a training routine by running back and forth along a 
straight stretch of running track. Sam jogs 100.0 m north in a time of 20.0 s, then 
turns and walks 50.0 m south in a further 25.0 s before stopping.

a Calculate Sam’s velocity in m s−1.

Thinking Working

Calculate the displacement. 
Remember that total 
displacement is the sum of 
individual displacements. Sam’s 
total journey consists of two 
displacements: 100.0 m north 
and then 50.0 m south. Take 
north to be the positive direction.

s = sum of displacements

s = 100.0 m north + 50.0 m south

s = (100.0) + (−50.0)

s = +50.0 m or 50.0 m north

100.0 m

finishstart

50.0 m

finishstart

S N 0

20

0
45

Work out the total time taken for 
the journey.

∆t = (20.0) + (25.0) = 45.0 s

Substitute the values into the 
velocity equation.

Displacement, s, is 50.0 m north.

Time taken, ∆t, is 45.0 s.

v
s
t

=
∆

v =
( . )
( . )
50 0
45 0

v =1.11111

Velocity is a vector, so a direction 
must be given.

v = 1.11 m s−1 north

b Determine the magnitude of Sam’s velocity in km h−1.

Thinking Working

Convert from m s−1 to km h−1 by 
multiplying by 3.60.

v = 1.11111 m s−1

v = (1.11111)(3.60)

v = 4.00000

As the magnitude of the velocity 
is needed, the direction is not 
required in this answer.

magnitude of v = 4.00 km h−1
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9CHAPTER 3   |   LINEAR MOTION

c What is Sam’s speed in m s−1?

Thinking Working

Calculate the distance. Remember 
that distance is the length of 
the path covered in the entire 
journey. The direction does not 
matter. Sam travels 100.0 m in one 
direction and then 50.0 m in the 
other direction.

d = (100.0) + (50.0)

d = 150.0 m

Work out the total time taken for 
the journey.

∆t = (20.0) + (25.0) = 45.0 s

Substitute the values into the 
speed equation.

Distance, d, is 150.0 m.

Time taken, ∆t, is 45.0 s.

v
d
t

=
∆

v =
( . )
( . )
150 0
45 0  

v = 3.33333
v = −3 33 1.  m s  

d What is Sam’s speed in km h−1?

Thinking Working

Convert from m s−1 to km h−1  
by multiplying by 3.60.

v = −3 33 1. 333 m s  

v = ( . )( . )3 33 3 60333  

v = 12.0000

v = −12 0 1.  km h  

Worked example: Try yourself 3.1.1

CALCULATING VELOCITY AND CONVERTING UNITS

Sally is an athlete performing a training routine by running back and forth along a 
straight stretch of running track. Sally jogs 108.0 m west in a time of 20.0 s, then 
turns and walks 165.0 m east in a further 45.0 s before stopping.

a Calculate Sally’s velocity in m s−1.

b Calculate the magnitude of Sally’s velocity in km h−1.

c What is Sally’s speed in m s−1?

d What is Sally’s speed in km h−1?

PHYSICSFILE

Breaking the speed limit
Over the past 100 years, advances in 
engineering and technology have led 
to the development of faster machines. 
Cars, planes and trains can now move 
people at speeds that were thought 
to be both unattainable and life-
threatening a century ago.

The 1 mile land-speed record is 
1220 km h−1 (339 m s−1). This was set in 
1997 in Nevada by Andy Green driving 
his jet-powered Thrust SSC.

The fastest combat jet is the MiG-25. In 
1976 it reached a speed of 3800 km h−1 
(1056 m s−1), which is more than three 
times the speed of sound.

In 2007, Markus Stoeckl of Austria set a 
new speed record for mountain biking. 
He reached a speed of 210 km h−1 
racing down a ski slope in Chile, 
pictured in Figure 3.1.11. This record 
was broken by Eric Barone in 2017 with 
a speed of 227.720 km h−1.

FIGURE 3.1.11 Markus Stoeckl set a new 
speed record for mountain biking in 2007.
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10 UNIT 1   |   MOTION, FORCES AND ENERGY

3.1 Review

SUMMARY

• Position, x, defines the location of an object with 
respect to a defined origin.

• Distance travelled, d, tells us how far an object has 
actually travelled. Distance travelled is a scalar 
quantity.

• Displacement, s, is a vector quantity and is defined 
as the change in position of an object, ∆x, in a 
given direction: s x x xf i= = −∆

• The average speed of a body, vav, is defined as the 
rate of change of distance and is a scalar quantity: 

v
d
tav

distance travelled
 time taken

= =
∆

 

• The average velocity of a body, vav, is defined as 
the rate of change of displacement and is a vector 
quantity:

v
s
tav

displacement
time taken

= =
∆

 

• To convert from m s−1 to km h−1, multiply by 3.60.

• To convert from km h−1 to m s−1, divide by 3.60.

• The SI unit for both speed and velocity is metres 
per second (m s−1).

KEY QUESTIONS

1 A student jogs one lap of a 400.0 m track in  
2.00 minutes. Calculate:
a their average speed
b their average velocity.

2 A person swims ten lengths of a 25.0 m pool. Which 
one or more of the following statements correctly 
describes their distance travelled and displacement?
A Their distance travelled is zero.
B Their displacement is zero.
C Their distance travelled is 250.0 m.
D Their displacement is 250.0 m.

3 An ant is walking back and forth along a metre 
ruler, as shown in the figure below. Using the sign 
convention that right is positive and left is negative, 
determine both the displacement and the distance 
travelled by the ant as it moves along the following 
paths.

0 10 20 30 40 50 60 70 80 90 100

A B C D E

cm

a A to B
b C to B
c C to D
d C to E and then to D

4 During a training ride, a cyclist rides 50.0 km north 
then 30.0 km south.
a What is the distance travelled by the cyclist during 

the ride?
b What is the displacement of the cyclist for this ride?

5 A lift in a city building, shown in the figure below, 
carries a passenger from the ground floor down to the 
basement, then up to the top floor.

50.0 m

10.0 m

top floor

ground
floor

basement

a What is the displacement of the lift as it travels 
from the ground floor to the basement?

b What is the displacement of the lift as it travels 
from the basement to the top floor?

c What is the distance travelled by the lift during this 
entire trip?

d What is the displacement of the lift during this 
entire trip?

3.1 Review
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11CHAPTER 3   |   LINEAR MOTION

6 A car travelling at a constant speed was timed over 
a distance of 400.0 m and was found to cover that 
distance in 12.0 s.
a What was the car’s average speed?
b The driver was distracted when they encountered 

a hazard, which meant that their reaction time 
was 0.750 s before applying the brakes. How far 
did the car travel during this period of time?

7 A cyclist travels 25.0 km in 90.0 minutes.
a What is their average speed in km h−1?
b What is their average speed in m s−1?

8 Ali pushes a toy truck 5.00 m east, then stops it 
and pushes it 4.00 m west. The entire motion takes 
10.0 s.
a What is the truck’s average speed?
b What is the truck’s average velocity?

9 Jackie rides a bicycle to school and travels 2.50 km 
south in 15.0 min.
a Calculate Jackie’s average speed in kilometres per 

hour (km h−1).
b What was Jackie’s average velocity in metres per 

second (m s−1)?

10 An athlete in training for a marathon runs 10.0 km 
north along a straight road before realising that they 
have dropped their drink bottle. The athlete turns 
around and runs back 3.0 km to find the bottle, 
then resumes running in the original direction. 
After running for 1.50 h, the athlete reaches a point 
15.0 km from the starting position and stops.
a What is the distance travelled by the athlete 

during the run?
b What is the athlete’s displacement during the run?
c What is the average speed of the athlete in 

km h−1?
d What is the athlete’s average velocity in km h−1?
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12 UNIT 1   |   MOTION, FORCES AND ENERGY

Vector subtraction was covered in detail in Section 2.3 on page xxx.

Worked example 3.2.1

CHANGE IN SPEED AND VELOCITY 1

A golf ball is dropped vertically onto a concrete floor and strikes the floor at 
5.00 m s−1. It then rebounds upwards at 5.00 m s−1.

u = 5.00 m s–1 v = 5.00 m s–1

3.2 Acceleration
If you have been on a train as it pulled out of the station, you have experienced 
acceleration. If you have been in an aeroplane as it has taken off along a runway, 
you will have experienced a much greater acceleration. Astronauts and fighter pilots 
experience enormous accelerations that would make an untrained person lose 
consciousness. Acceleration, which is a measure of how quickly velocity changes, 
will be discussed in this section.

FINDING THE CHANGE IN VELOCITY AND SPEED
The velocity and speed of everyday objects are changing all the time. Examples of 
these are when a car moves away as the traffic lights turn green, when a tennis ball 
bounces or when you travel on a rollercoaster. If the initial and final velocity of an 
object are known, its change in velocity can be calculated.

To find the change, ∆, in any physical quantity, including speed and velocity, the 
initial value is taken away from the final value: 

Δv = vf − vi

Change in speed is the final speed minus the initial speed:

Δv = vf − vi

where vi is the initial speed (m s−1)

 vf is the final speed (m s−1)

 Δv is the change in speed (m s−1).

Since speed is a scalar, direction is not required.

Change in velocity is the final velocity minus the initial velocity:

Δv = vf − vi

where vi is the initial velocity (m s−1)

  vf is the final velocity (m s−1)

  Δv is the change in velocity (m s−1).

Since velocity is a vector, this should be done by performing a vector subtraction. 
As for all vectors, direction is required.
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13CHAPTER 3   |   LINEAR MOTION

a Calculate the change in speed of the ball.

Thinking Working

Find the values for the initial speed 
and the final speed of the ball.

vi = 5.00 m s−1

vf = 5.00 m s−1

Substitute the values into the change 
in speed equation:  
∆v v vf i= −

∆v = vf − vi

∆v = (5.00) − (5.00)

∆v = 0.0 m s−1

b Calculate the change in velocity of the ball.

Thinking Working

Velocity is a vector. Apply the sign 
convention up for positive and down 
for negative to replace the directions.

vi = 5.00 m s−1 down

vi = −5.00 m s−1

vf = 5.00 m s−1 up

vf = +5.00 m s−1

As the change in velocity equation is 
a vector subtraction equation, reverse 
the direction of vi to get −vi, then add 
the two vectors.

vi = −5.00 m s−1, therefore

−vi = +5.00 m s−1

Substitute the values into the vector 
addition equation: ∆v v vf i= + −( ) 

Δv = vf + (−vi)

Δv = (+5.00) + (+5.00)

∆v = +10.0 m s−1

Apply the sign convention to describe 
the direction.

∆v = 10.0 m s−1 up

Worked example: Try yourself 3.2.1

CHANGE IN SPEED AND VELOCITY 1

A golf ball is dropped onto a wooden floor and strikes the floor at 9.00 m s−1. It then 
rebounds at 7.00 m s−1.

a Calculate the change in speed of the ball.

b Calculate the change in velocity of the ball.

ACCELERATION
Consider the following information about the instantaneous velocity of a car that 
starts from rest as shown in Figure 3.2.1.

t = 0.00 s 1.00 s 2.00 s 3.00 s

FIGURE 3.2.1 A car’s acceleration as it increases in velocity from 0.0 km h−1 to 30.0 km h−1.

The velocity of the car pictured above increases by 10.0 km h−1 each second. 
In other words, its velocity changes by +10 km h−1 per second. This is stated as an 
acceleration, a = +10.0 kilometres per hour per second or +10.0 km h−1 s−1. More 
commonly in physics, velocity information is given in metres per second.
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14 UNIT 1   |   MOTION, FORCES AND ENERGY

The athlete in Figure 3.2.2 takes 3.00 s to come to a stop at the end of a race.

v = 6.00 m s–1 v = 4.00 m s–1 v = 2.00 m s–1 v = 0.00 m s–1

t = 0.00 s t = 1.00 s t = 2.00 s t = 3.00 s

FIGURE 3.2.2 The velocity of the athlete changes by −2.00 m s−1 each second. Therefore, the 
acceleration, a, is −2.00 m s−2.

The velocity of the athlete changes by −2.00 m s−1 each second, so the acceleration 
is −2.00 metres per second per second. This is usually expressed as a = −2.00 metres 
per second squared or a = −2.00 m s−2.

A negative acceleration can mean that the object is slowing down in the direction 
of travel, as is the case with the athlete in Figure 3.2.2. A negative acceleration can 
also mean speeding up but in the opposite direction.

As acceleration is a vector quantity, vector diagrams can be used to calculate 
resultant accelerations of an object. Vector diagrams were covered in Chapter 2.

Average acceleration
As with speed and velocity, the average acceleration of an object can also be 
calculated. As all calculations of acceleration in this course are calculations of 
average acceleration, the av subscript can be assumed and so it can be omitted from 
your working.

Average acceleration, aav, is the rate of change of velocity:

    

a

v

v

=

=

=
−
−

change in velocity
time taken

a
t

a
v
t t
f i

f i

∆
∆

where a is the acceleration (m s−2)

  vf is the final velocity  
(m s−1)

  vi is the initial velocity  
(m s−1)

  ∆t = tf − ti is the time 
interval (s).

Worked example 3.2.2

CHANGE IN SPEED AND VELOCITY 2

A golf ball is dropped vertically onto a concrete floor and strikes the floor at 
7.50 m s−1. It then rebounds upwards at 7.50 m s−1. The contact with the floor 
lasts for 25.0 milliseconds.

Calculate the average acceleration of the ball during its contact with the floor.

Thinking Working

Note that the values you will need to 
calculate the average acceleration are 
initial velocity, final velocity and period 
of time.

Use the convention that up is positive 
and down is negative.

Convert 25.0 ms into s by multiplying 
by 10−3, as the symbol m, for milli, 
represents 10−3.

vi = −7.50 m s−1

−vi = +7.50 m s−1

vf = +7.50 m s−1

∆v = vf + (−vi) 

∆v = (+7.50) + (+7.50)

∆v = +15.00 m s−1 

∆t = 25.0 ms

∆t = 25.0 × 10−3 

∆t = 2.50 × 10−2 s
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15CHAPTER 3   |   LINEAR MOTION

Substitute the values into the average 
acceleration equation. a =

change in velocity
time taken

a
v
t

=
∆
∆

 

a =
+

× −

( . )
( . )

15 00
2 50 10 2

 

a = +600.00

a = +6.00 × 102 m s−2

Acceleration is a vector, so you must 
include a direction in your answer.

a = 6.00 × 102 m s−2 up

Worked example: Try yourself 3.2.2

CHANGE IN SPEED AND VELOCITY 2

A netball is dropped vertically onto a court and strikes the surface at 9.00 m s−1. 
It then rebounds upwards at 7.00 m s−1. The contact time with the court is 
35.0 milliseconds.

Calculate the average acceleration of the ball during its contact with the court.

PHYSICSFILE

Human acceleration
In the 1950s, the United States Air Force used a rocket sled to 
determine the effect of extremely large accelerations on humans. 
One of these sleds is shown in Figure 3.2.3. The aim was to find 
out the greatest accelerations that humans could safely withstand 
to help develop ejector seats for pilots.

The testing site consisted of an 800 m long railway track and 
a sled with nine rocket motors. One volunteer, Colonel John 
Stapp, was strapped into the sled and accelerated to speeds of 

over 1000 km h−1 in a very short period of time. Water scoops 
were used to stop the sled abruptly in just 0.35 s. This equates 
to a deceleration of greater than 400 m s−2. The effects of these 
massive accelerations are evident on his face (Figure 3.2.4).

Colonel John Stapp was a human guinea pig who suffered a 
great deal of discomfort so that other pilots would benefit. Safer 
ejector seats and non-human crash test dummies were developed 
because of these experiments.

FIGURE 3.2.3 The rocket-powered sled used to test the effects of 
acceleration on humans. FIGURE 3.2.4 Photos showing the distorted face of Colonel John Stapp.
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16 UNIT 1   |   MOTION, FORCES AND ENERGY

SUMMARY

• Change in speed is a scalar calculation:

Δv = final speed – initial speed = vf − vi

• Change in velocity is a vector calculation:
Δv = final velocity – initial velocity = vf − vi

• Acceleration is a vector. The acceleration of 
a body, a, is defined as the rate of change of 
velocity:

a =
change in velocity

time taken

a
v
t

v v
t t
f i

f i

= =
−
−

∆
∆

 

• The standard unit of acceleration is metres per 
second per second (m s−2).

3.2 Review

KEY QUESTIONS

1 A radio-controlled car is travelling east at 10.0 km h−1. 
After hitting some sand, it slows down to 3.00 km h−1 
east. Determine its change in speed.

2 A lump of Blu Tack is falling vertically at 5.00 m s−1 
and when it hits the floor it stops without rebounding. 
Calculate its change in velocity during the collision.

3 A ping pong ball is falling vertically at 6.00 m s−1. As it 
hits the floor, it rebounds at 3.00 m s−1 up. Calculate its 
change in velocity during the bounce.

4 While playing a 90 minute soccer match, Ashley is 
running north at 7.50 m s−1. Ashley slides along the 
ground with 1.50 seconds remaining in the match and 
stops at the same time the referee ends the game. 
Calculate Ashley’s average acceleration as they slide to 
a stop.

5 Dee launches a model rocket at t = 0.00 s vertically 
and it reaches a speed of 155 km h−1 at t = 3.50 s. 
What is the magnitude of its average acceleration in 
km h−1 s−1?

6 A squash ball travelling east at 25.7 m s−1 strikes the 
front wall of the court and rebounds at 15.2 m s−1 
west. The contact time between the wall and the ball is 
0.0535 s. Calculate:

a the change in speed of the ball
b the change in velocity of the ball
c the average acceleration of the ball during its 

contact with the wall.

7 A greyhound starts from rest at t = 0.00 s and 
accelerates uniformly. Its velocity at t = 1.25 s is 
8.08 m s−1 south. Determine:
a the change in speed of the greyhound
b the change in velocity of the greyhound
c the acceleration of the greyhound.

8 How long does it take a vehicle travelling at 10.0 m s−1 
to reach 30.0 m s−1 if it accelerates at 3.00 m s−2?

9 A car travelling at 20.0 m s−1 decelerates at 2.50 m s−2. 
Calculate the time taken to stop.

10 A cyclist takes 4.00 s to slow down at −3.00 m s−2 and 
completely stop. Calculate the initial velocity of the 
cyclist.
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17CHAPTER 3   |   LINEAR MOTION

3.3 Graphing position, velocity and 
acceleration over time
At times, even the motion of an object travelling in a straight line can be complicated. 
The object may travel forwards or backwards, speed up or slow down, or even stop. 
Where the motion remains in one dimension, however, the information can be more 
easily understood when presented in graphical form.

The main advantage of a graph compared with a table is that it allows the nature 
of the motion to be seen clearly. Information that is contained in a table is not as 
readily accessible or as easy to interpret as information presented graphically. This 
section examines position–time, velocity–time, and acceleration–time graphs.

POSITION–TIME (X−T) GRAPHS
A position–time graph indicates the position, x, of an object at any time, t, for 
motion that occurs over an extended time interval. However, the graph can also 
provide additional information.

Consider Sophie, shown in Figure 3.3.1, swimming laps of a 50.0 m pool. Her 
position–time data are shown in Table 3.3.1. The starting point is treated as the 
origin for this motion.

TABLE 3.3.1 Positions and times of a swimmer completing 1.5 laps of a pool.

Time (s) 0.0  5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0

Position (m) 0.0 10.0 20.0 30.0 40.0 50.0 50.0 50.0 45.0 40.0 35.0 30.0 25.0

Analysis of Table 3.3.1 reveals several features of Sophie’s swim. For the first 
25.0 s, she swims at a constant rate. Every 5.00 s she travels 10.0 m in a positive 
direction, i.e. her velocity is +2.00 m s−1. Then, from 25.0 s to 35.0 s, her position 
does not change. She seems to be resting, as she is stationary for this 10.0 s interval. 
Finally, from 35.0 s to 60.0 s, she swims back towards the starting point, in a 
negative direction. On this return lap, she maintains a more leisurely rate of 5.00 m 
every 5.00 s, so her velocity is −1.00 m s−1. However, Sophie does not complete this 
lap, finishing 25.0 m from the start. This data is shown more conveniently on the 
position–time graph in Figure 3.3.2.
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FIGURE 3.3.2 This position–time graph represents the motion of a swimmer travelling 50.0 m along 
a pool, then resting and swimming back towards the starting position. The swimmer finishes halfway 
along the pool.

0.0 10.0 20.0 30.0 40.0 50.0 m

Position

FIGURE 3.3.1 Swimmer standing at the end of a 
50.0 m swimming pool.
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18 UNIT 1   |   MOTION, FORCES AND ENERGY

The displacement, s, of the swimmer can be determined by comparing the initial 
and final positions. Her displacement between 20.0 s and 60.0 s is, for example:

  s = final position – initial position
  s = (25.0) − (40.0)
  s = −15.0 m

By further examining the graph, it can be seen that during the first 25.0 s 
the swimmer has a displacement of +50.0 m. Therefore, her average velocity is 
+2.00  m s−1, i.e. 2.00 m s−1 to the right, during this time. This value can also be 
obtained by finding the gradient of this section of the graph.

A positive velocity indicates that the object is moving in a positive direction and 
negative velocity indicates motion in a negative direction.

To confirm that the gradient of a position–time graph is a measure of velocity 
you can use dimensional analysis:

gradient of x−t graph = rise
run  = 

Δx
Δt

The units of this gradient will be metres per second (m s−1) so gradient is a 
measure of velocity. Note that the rise in the graph is the change in position, which 
is the definition of displacement; that is, Δx = s.

Non-uniform velocity
For motion with uniform (constant) velocity, the position–time graph will be 
a straight line, but if the velocity is non-uniform the graph will be curved. If the 
position–time graph is curved, the instantaneous velocity will be the gradient of the 
tangent to the line at the point of interest; the average velocity will be the gradient of 
the chord between two points. This is illustrated in Figure 3.3.4.

C
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FIGURE 3.3.4 The instantaneous velocity at point A is the gradient of the tangent at that point. The 
average velocity between points B and C is the gradient of the chord between these points on the 
graph.

A straight-line in a position–time 
graph (Figure 3.3.3) indicates a 
uniform velocity. The slope (gradient) 
of the line is equal to the velocity of 
the object.
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gradient = velocity

FIGURE 3.3.3 Position–time graph 
with gradient.
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19CHAPTER 3   |   LINEAR MOTION

Worked example 3.3.1

ANALYSING A POSITION–TIME GRAPH

The motion of a cyclist is represented by the position–time graph below, with 
important features of the motion labelled A, B, C, D, E and F.
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m
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8040 10060
A

CB

D E

F

200

a What is the velocity of the cyclist between A and B?

Thinking Working

Determine the change in position 
(displacement) of the cyclist between 
A and B using:

s = final position – initial position
s x x xf i= = −∆  

At A, xi = 0.0 m

At B, xf = 100.0 m

         s = (100.0) − (0.0)

         s = +100.0 m or 100.0 m 
forwards (that is, away from the 
starting point)

Determine the time taken to travel 
from A to B.

∆t t tf i= −  

At A, ti = 0.0 s

At B, tf = 20.0 s

∆t = (20.0) − (0.0)

∆t = 20.0 s

Calculate the gradient of the graph 
between A and B using:

gradient of x−t graph = rise
run  = 

Δx
Δt

Remember that Δx = s.

gradient =
∆
∆
x
t
 

gradient =
+( . )
( . )
100 0
20 0

 

gradient = +5.00

State the velocity, using:

gradient of x−t graph = velocity

Velocity is a vector so a direction must 
be given.

Since the gradient is +5.00, the velocity 
is +5.00 m s−1 or 5.00 m s−1 forwards.

b Describe the motion of the cyclist between B and C.

Thinking Working

Interpret the shape of the graph 
between B and C.

The graph is flat between B and C, 
indicating that the cyclist’s position is 
not changing during this time. So, the 
cyclist is not moving. If the cyclist is 
not moving, the velocity is 0 m s−1.
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20 UNIT 1   |   MOTION, FORCES AND ENERGY

You may confirm the result by 
calculating the gradient of the graph 
between B and C using:

gradient of x−t graph = rise
run  = 

Δx
Δt

Remember that Δx = s.

gradient
(0.00)
(20.0)

=

gradient = 0.00

Since the gradient is 0.00, the velocity 
is 0.00 m s−1.

Worked example: Try yourself 3.3.1

ANALYSING A POSITION–TIME GRAPH

Use the graph shown in Worked example 3.3.1 to answer the following questions.

a What is the velocity of the cyclist between E and F?

b Describe the motion of the cyclist between D and E.

VELOCITY–TIME (v–t ) GRAPHS
A graph of velocity, v, against time, t, shows how the velocity of an object changes 
with time. 

Analysing motion
A velocity–time graph is useful for analysing the motion of an object moving in a 
complex manner.

Consider the example of the girl in Figure 3.3.5. Aliyah is running back and 
forth along an aisle in a supermarket. A study of the velocity–time graph reveals 
that Aliyah is moving with a positive velocity, i.e. in a positive direction, for the first 
6.0 s. Between the 6.0 s mark and the 7.0 s mark she is stationary, then she runs in 
the reverse direction, i.e. has a negative velocity, for the final 3.0 s.

(a)
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FIGURE 3.3.5 Diagram and v−t graph for a girl running along an aisle.

The graph shows Aliyah’s velocity at each instant in time. She moves in a positive 
direction with a constant speed of 3.00 m s−1 for the first 4.0 s. From 4.0 s to 6.0 s, 
she continues moving in a positive direction but slows down. At 6.0 s, she comes to 
a stop for 1.0 s. During the final 3.0 s, she accelerates in the negative direction for 
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1.0 s, then travels at a constant velocity of −1.0 m s−1 for 1.0 s. She then slows down 
and comes to a stop at 10.0 s. Remember that whenever the graph is below the time 
axis, velocity is negative, which indicates travel in the reverse direction. So, she is 
travelling in the reverse direction for the last 3.0 s of her journey.

Finding displacement
A velocity–time graph can also be used to find the displacement of the object under 
consideration, as shown in Figure 3.3.6.

Displacement, s, is given by the area 
under a velocity–time graph, i.e. the 
area between the graph and the time 
axis. It is important to note that an 
area below the time axis indicates a 
negative displacement, i.e. motion in a 
negative direction.

area = displacement

v 
(m

 s 
–1

)

t (s)
FIGURE 3.3.6 The area under a v−t graph 
gives displacement.

It is easier to see why the displacement is given by the area under the v−t graph 
when velocity is constant. For example, the graph in Figure 3.3.7 shows that in 
the first 6.0 s of motion, Aliyah moves with a constant velocity of +3.0 m s−1 for 
4.0 s. Note that the area under the graph for this period of time is a rectangle. Her 
displacement, s, during this time can be determined by rearranging the formula for 
velocity:

 v s
t

=
∆

∴ s = v × Δt
 s = height × base
 s = area under v−t graph

Aliyah then slows from 3.0 m s−1 to zero in the next 2.0 s. To understand why the 
displacement for this period of time is given by the triangular area under the graph 
requires more complicated mathematics known as calculus, which is beyond the 
scope of this book.
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area 
= +12.0 m
= displacement

area = _ × 2.0 × 3.0
1
2

∴ s = +3.0 m
Time (s)

1 2 3 4 5 6 7 8 9 10 11

gradient =  ___  = –1.5 m s–1
–3.0
2.0

= acceleration

FIGURE 3.3.7 Area values as shown in a v−t graph.

From Figure 3.3.7, the area under the graph for the first 4.0 s gives Aliyah’s 
displacement during this time, i.e. +12.0 m. The displacement from 4.0 s to 6.0 s is 
represented by the area of the darker blue triangle and is equal to +3 m. The total 
displacement during the first 6 s is (+12.0 m) + (+ 3.0 m) = +15.0 m.
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22 UNIT 1   |   MOTION, FORCES AND ENERGY

Worked example 3.3.2

ANALYSING A VELOCITY–TIME GRAPH

The motion of a radio-controlled car initially travelling east across a driveway in a 
straight line is represented by the graph below.
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a What is the displacement of the car during the first 4.0 s?

Thinking Working

Displacement is the area 
under the graph. You must 
therefore find the area under 
the graph for the period of 
time for which you want to 
calculate the displacement.

As s v t= ∆ , or s t v= ×∆ ,

the base, b, is Δt and the 
height, h, is v.

Use s = b × h for squares and 
rectangles.

Use s b h= ×
1
2

( ) for triangles.
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 (m
 s–1

)

–2
–4

0
2
4
6
8

Time (s)1 2 3 4 5 6 7 8 9

area 
= +16.0 m area = –4.0 m

area 
= –12.0 m

The area from 0.0 to 4.0 s is a triangle, so:

s b h= ×
1
2

( )

s = +
1
2

4 0 8 0( . )( . )
  

s = +16.0 m

Displacement is a vector 
quantity, so a direction is 
needed.

displacement = 16.0 m east

b What is the average velocity of the car for the first 4.0 s?

Thinking Working

Identify the equation and variables, 
and apply the sign convention. v

s
t

=
∆  

s = +16.0 m

∆t = 4.0 s

Substitute values into the equation:

v
s
t

=
∆

v
s
t

=
∆

v =
+( 16.0)
(4.0)

v = +4.0000

Velocity is a vector quantity, so a 
direction is needed.

v = 4.0 m s−1 east
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23CHAPTER 3   |   LINEAR MOTION

Worked example: Try yourself 3.3.2

ANALYSING A VELOCITY–TIME GRAPH

Use the graph shown in Worked example 3.3.2 to answer the following questions.

a What is the displacement of the car from 4.0 to 6.0 s?

b What is the average velocity of the car from 4.0 to 6.0 s?

ACCELERATION FROM A VELOCITY–TIME (v–t ) GRAPH
The acceleration of an object can also be found from a velocity–time graph, as 
shown in Figure 3.3.8.

Consider the motion of Aliyah in the 2.0 s interval between 4.0 s and 6.0 s on the 
graph in Figure 3.3.9. She is moving in a positive direction but slowing down from 
3 m s−1 to rest.
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= displacement
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gradient =  ___  = –1.5 m s–1
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= acceleration

FIGURE 3.3.9 Acceleration as displayed in a v−t graph.

The gradient of the line from ti = 4.0 s to tf = 6.0 s is equal to her acceleration, as:

 gradient = 
Δv
Δt

 a = 
Δv
Δt

 = 
vf − vi

Δt
 = 

(0.0) − (3.0)
(2.0)  = −1.5 m s−2

Acceleration is the change in velocity divided by the period of time taken, which 
is equal to the gradient of the v−t graph. As can be seen from Figure 3.3.9 and the 
calculation above, the gradient of the line between 4.0 s and 6.0 s is −1.5 m s−2.

The gradient of a velocity–
time graph gives the average 
acceleration of the object over the 
time interval.

gradient = acceleration

v 
(m

 s 
–1

)

t (s)

run

rise

FIGURE 3.3.8 Gradient as displayed in a 
v−t graph.
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24 UNIT 1   |   MOTION, FORCES AND ENERGY

Worked example 3.3.3

FINDING ACCELERATION USING A VELOCITY–TIME GRAPH

Consider the motion of the radio-controlled car described in Worked 
example 3.3.2. The car initially travels east in a straight line across a 
driveway as shown by the graph below.
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What is the acceleration of the car during the first 4.0 s?

Thinking Working

Acceleration is the gradient of a v−t 
graph. Calculate the gradient using:

          
gradient

rise
run

 = 

           
a

v
t

= =gradient
∆
∆

 

gradient from 0.0 to 4.0 s
 
=

rise
run

a
v
t

=
∆
∆

a
v v
t t
f i

f i

=
−
−

a =
−
−

( . ) ( . )
( . ) ( . )
0 0 8 0
4 0 0 0  

a = −2.0000

a = −2.0 m s−2

Acceleration is a vector quantity, so 
a direction is needed.
Note: In this case, the car is 
moving in the easterly direction 
and slowing down.

a = 2.0 m s−2 west

Worked example: Try yourself 3.3.3

FINDING ACCELERATION USING A VELOCITY–TIME GRAPH

Use the graph shown in Worked example 3.3.3 to answer the following question.

What is the acceleration of the car during the period from 4.0 to 6.0 s?

M03_PPW_SB11_17713_2PP.indd   24M03_PPW_SB11_17713_2PP.indd   24 08-Aug-24   14:27:5208-Aug-24   14:27:52

DRAFT



25CHAPTER 3   |   LINEAR MOTION

DISTANCE TRAVELLED
A velocity–time graph can also be used to calculate the distance travelled by a 
moving object. The process of determining distance requires you to calculate the 
area under the v−t graph, as you would when calculating displacement. However, 
since distance travelled by an object always increases as the object moves, regardless 
of direction, you must add up all the areas between the graph and the time axis, 
regardless of whether the area is above or below the axis.

For example, Figure 3.3.10 shows the velocity–time graph of the radio-controlled 
car from Worked example 3.3.3. The area above the time-axis, which corresponds 
to motion in the positive direction, is +16.0 m, while the area below the axis, which 
corresponds to negative motion, consists of −4.0 m and −12.0 m. To calculate the 
total displacement, you would add up each displacement:

total displacement s = (+16.0) + (−4.0) + (−12.0)
           s = (+16.0) + (−16.0)
            s = 0.0 m

To calculate the total distance, you would add up the magnitude of the areas, 
ignoring whether they are positive or negative:

  total distance d = (16.0) + (4.0) + (12.0)
            d = 32.0 m
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gradient = –2.0 m s–1
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FIGURE 3.3.10 Both distance and displacement can be calculated by using the areas under the 
velocity–time graph.

Non-uniform acceleration
For motion with uniform (constant) acceleration, the velocity–time graph will be a 
straight line. For non-uniform acceleration, the velocity–time graph will be curved. 
If the velocity–time graph is curved, the instantaneous acceleration will be the 
gradient of the tangent to the curve at the point of interest; the average acceleration 
will be the gradient of the chord between two points. The displacement can still be 
calculated by finding the area under the graph; however, you will need to make some 
estimations.

PHYSICSFILE

Area under graphs
The calculation of the area under 
a graph is useful in many areas of 
physics.

Some examples include:

• power–time graphs, where the area 
represents the energy used over that 
period of time

• force–time graphs, where the area 
represents the impulse or change in 
momentum over a period time (see 
section xxx)

• force–displacement graphs, where 
the area represents the work done or 
energy transferred while the forces 
are acting.
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26 UNIT 1   |   MOTION, FORCES AND ENERGY

ACCELERATION–TIME (a–t ) GRAPHS
An acceleration–time graph simply indicates the acceleration of the object as a 
function of time. The area under an acceleration–time graph is found by multiplying 
an acceleration, a, and the period of time, Δt, over which the acceleration changes. 
The area gives a change in velocity, Δv, value:

area = Δv = a × Δt 
In order to establish the actual velocity of the object, its initial velocity must be 

known. Figure 3.3.11 shows both Aliyah’s velocity versus time (v−t) and acceleration 
versus time (a−t) graphs.
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FIGURE 3.3.11 (a) Aliyah’s velocity versus time (v−t) graph. (b) Aliyah’s acceleration versus time (a−t) 
graph.

From ti = 4.0 to tf = 6.0 s, the area under the a−t graph shows that Δv = −3.0 m s−1. 
This indicates that she has slowed down by 3.0 m s−1 during this period of time. 
Aliyah’s v−t graph confirms this fact. Her initial speed is 3.0 m s−1, so she must be 
stationary (v = 0) after 6.0 s. This calculation could not be made without knowing 
her initial velocity.
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27CHAPTER 3   |   LINEAR MOTION

EXTENSION

Graphing in physics
Graphs in physics can be useful in solving problems as an alternative to using 
equations. An advantage of graphs is that they give a quick and easy picture of 
the relationship between the data that has been measured.

In this course, you will mainly analyse straight-line or linear graphs. A higher 
level of mathematical skills is required to analyse nonlinear graphs or curves.

Differentiation is used to find the gradients of curves, where the intervals of 
change are infinitely small.

For a straight line, gradient
rise
run

= =
∆
∆
x
t

If you consider a curve to be a series of infinitesimally small straight lines, 

then Δx and Δt are also extremely small. The gradient then becomes 
δ
δ
x
t
, where 

the lower-case Greek letter delta, δ, denotes an infinitesimally small change. 

This is often written as 
dx
dt

, i.e. the derivative of x with respect to t.

For a velocity–time graph, the gradient gives the acceleration—i.e.
 
a

dv
dt

=

You have already seen that displacement can be found by calculating the area 
under a velocity–time graph, for example by breaking up the area under the 
graph into rectangles and triangles. Similarly, taking extremely small sections 
and adding them all together again gives the area under a non-linear graph, 
as shown in Figure 3.3.12. This is called integration, and for a curve given by a 
function f(x) can be written as:

area = ∫ f(x)dx
a

b

So, for a velocity–time graph, finding the area under the graph gives you the 
displacement:

s
t

t

= ∫ vdt
1

2

f (x)

a

y

x

y = f (x)

bΔx
FIGURE 3.3.12 The small areas are added together by integration.
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28 UNIT 1   |   MOTION, FORCES AND ENERGY

3.3 Review
SUMMARY

• A position–time (x–t) graph can be used to 
determine the location of an object at any given 
time. Additional information can also be derived 
from the graph:

 - displacement, s, is given by the change in 
position of an object

 - the velocity, v, of an object is given by the 
gradient of the position–time graph

 - if the position–time graph is curved, the 
gradient of the tangent at a point gives the 
instantaneous velocity, v.

• The gradient of a velocity–time (v–t) graph is the 
acceleration, a, of the object.

• The area under a velocity–time (v–t) graph is the 
displacement, s, of the object.

• The area under an acceleration–time graph (a–t) is 
the change in velocity, Δv, of the object.

KEY QUESTIONS

1 Which of the following does the gradient of a position–
time graph represent?
A displacement
B acceleration
C time
D velocity

The following information relates to questions 2–6.
The graph represents the straight-line motion of a radio-
controlled toy car.
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2 Describe the motion of the car in terms of its position.

3 Find out the position of the toy car after:
a 2.0 s
b 4.0 s
c 6.0 s
d 10.0 s.

4 When did the car return to its starting point?

5 Calculate the velocity of the toy car:
a during the first 2.0 s
b at 3.0 s
c from ti = 4.0 s to tf = 8.0 s
d at 8.0 s
e from ti = 8.0 s to tf = 9.0 s.

6 During its total 10.0 s of motion, what was the car’s:
a distance travelled
b displacement?

7 The position–time graph for a cyclist travelling north 
along a straight road is shown. Calculate the following 
information about the cyclist’s motion.
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a What was the average speed of the cyclist during 
the first 30.0 s?

b What was the average velocity of the cyclist during 
the final 10.0 s?

c What was the average velocity of the cyclist for the 
whole trip?
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29CHAPTER 3   |   LINEAR MOTION

8 The graph in the figure below shows the motion of a 
dog running along a footpath.

1 2 3 4 5 6 7 8 9 10
–1

–2

0

1

2

3

Ve
lo

ci
ty

 (m
 s–1

)

B C D E FA

Time (s)

a What is the magnitude of the acceleration of the 
dog at t = 1.0 s?

b What is the magnitude of the acceleration of the 
dog at t = 5.0 s?

c What is the magnitude of the displacement of the 
dog for the first 7.0 s?

d What is the magnitude of the average velocity of the 
dog over the first 7.0 s?

9 The graph below shows the position of a motorbike 
along a straight stretch of road as a function of time. 
The motorcyclist starts 200.0 m north of a town.
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Calculate the instantaneous velocity of the motorcyclist 
at each of the following times:
a 15.0 s
b 35.0 s.

10 The straight-line motion of a high-speed train is shown 
in the graph below.
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a How long does it take the train to reach its 
maximum speed?

b What is the acceleration of the train 10.0 s after 
starting?

c What is the acceleration of the train 40.0 s after 
starting?

d By counting squares, estimate the displacement of 
the train after 120.0 s.
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30 UNIT 1   |   MOTION, FORCES AND ENERGY

3.4 Equations for uniform acceleration
A graph is an excellent way of representing motion as it provides a great deal of 
information that is easy to visualise and interpret. However, a graph is time-consuming 
to draw, and sometimes values can only be estimated rather than precisely calculated.

In the previous section, various graphs of motion were used to determine 
quantities such as displacement, velocity and acceleration. This section examines a 
more precise method of solving problems involving constant or uniform acceleration. 
This method involves the use of a series of equations that can be derived from the 
basic definitions developed earlier.

DERIVING THE EQUATIONS
Consider an object moving in a straight line with an initial velocity, vi, and a uniform 
acceleration, a, for a time interval, Δt. As the variables vi, vf, and a are vectors, and 
the motion is limited to one dimension, the sign and direction convention of right 
as positive and left as negative can be used. After a period of time, Δt, the object has 
changed its velocity from an initial velocity of vi and is now travelling with a final 
velocity of vf . Its acceleration will be given by:

  
a = 

Δv
Δt

 = 
vf − vi
tf − ti

 

If the initial time is ti and the final time is tf, then Δt = tf − ti. The above equation 
can then be rearranged as:

The average velocity of the object is:
 
 vav = 

s
Δt

When acceleration is uniform, average velocity, vav, can also be found as the 
average of the initial and final velocities:

 vav = 
1
2

(vi + vf)

This relationship is shown graphically in Figure 3.4.1.

10

Time (s)

average
velocity

4

Ve
lo

ci
ty

 (m
 s–1

)

5

FIGURE 3.4.1 Uniform acceleration as displayed by a v−t graph.

By combining these two equations of average velocity, we get:

 
s

Δt
 = 

1
2

 (vi + vf)
This gives:

 vt = vi+ aΔt (i)

 
s v v ti f= +( )1

2
∆   (ii)
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31CHAPTER 3   |   LINEAR MOTION

A graph describing constant acceleration motion is shown in Figure 3.4.2. For 
constant acceleration, the velocity is increasing by the same amount in each time 
interval, so the gradient of the v−t graph is constant. The displacement, which is 
equal to the area under the v−t graph, is given by the combined area of the rectangle 
and the triangle:  

area = s = s1 + s2

s = (vi × Δt) + 
1
2

 (vf − vi) × Δt

As a = 
vf − vi

Δt
  then vf − vi = aΔt, and this can be 

substituted for vf − vi in the equation above to give:      

s = (vi × Δt) + 
1
2

 (aΔt)Δt 

s = (vi  Δt) + 
1
2

 aΔt2

Another way to calculate the area under the graph is to use the large area (vf Δt) 

and subtract the triangle component (
1
2

 aΔt2). This will give you:

Rewriting equation (i) with ∆t as the subject gives:

Δt = 
vf − vi

a
Now, if this is substituted into equation (ii):

s = 
1
2

 (vf − vr)Δt        (ii)

s = 
vi + vf

2
 × 

vf − vi

a  

Multiplying the top line and bottom line gives:
  

s = 
v2

f  − v2
i

2a
Finally, transposing this gives:

Equations (i) to (v) are commonly used to solve problems in which acceleration 
is constant. They are summarised below.

 s = viΔt + 
1
2

 aΔt2 (iii)

 s = vfΔt − 
1
2

 aΔt2 (iv)
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FIGURE 3.4.2 The area under a v–t graph 
broken up into a rectangle and a triangle.

 v v asf i
2 2 2= +  (v)

 v v a tf i= + ∆

s v v ti f= +( )1
2

∆  

s v t a ti= +∆ ∆1
2

2

s = vfΔt − 
1
2

 aΔt2

v v asf i
2 2 2= +

where s is the displacement (m)
 vi is the initial velocity (m s−1)
 vf is the final velocity (m s−1)
 a is the acceleration (m s−2)
 Δt is the time taken (s).

M03_PPW_SB11_17713_2PP.indd   31M03_PPW_SB11_17713_2PP.indd   31 08-Aug-24   15:24:5508-Aug-24   15:24:55

DRAFT



32 UNIT 1   |   MOTION, FORCES AND ENERGY

SOLVING PROBLEMS USING EQUATIONS
When solving problems using these equations, it is important to think about the 
problem and try to visualise what is happening. Follow the steps below.
Step 1 Draw a simple diagram of the situation.
Step 2 Write down the information that has been given in the question. You might 

like to use the word ‘sifat’ as a memory prompt to help you remember the 
list of variables in the order s, vi, vf, a and ∆t. Use a sign convention to assign 
positive and negative values to indicate directions. Convert all units to SI 
form.

Step 3 Select the equation that matches your data. It should include three values 
that you know, and the one value that you want to solve.

Step 4 Write your preliminary answer to five or six significant figures, which may 
then be used in any subsequent questions, i.e. part (b), (c), etc. This will 
help to reduce rounding errors in subsequent answers.

Step 5 Use the appropriate number of significant figures in your final answer. If 
your answer is greater than 9999 or less than 0.001, provide your answer in 
scientific notation.

Step 6 Include units with the final answer and specify a direction if the quantity is 
a vector.

Worked example 3.4.1

USING THE EQUATIONS OF MOTION

A snowboarder in a race is travelling 10.0 m s−1 north as she crosses the finishing 
line. She then decelerates uniformly, coming to a stop over a distance of 20.0 m.

a Calculate her acceleration as she comes to a stop.

Thinking Working

Write down the known quantities as 
well as the quantity you are finding. 
(The term ‘sifat’ may help you to recall 
them.) 

Apply the sign convention that north is 
positive and south is negative.

Take all the information that you can 
from the question:

• constant acceleration, so use 
equations for uniform acceleration

• ‘coming to a stop’ means that the 
final velocity is zero.

s = +20.0 m

vi = +10.0 m s−1

vf = 0.00 m s−1

a = ?

∆t = ?

Identify the correct equation to use. v v asf i
2 2 2= +  

Substitute known values into the 
equation and solve for a.

v v asf i
2 2 2= +

a
v v

s
f i=
−2 2

2

a =
− +
+

( . ) ( . )
( . )

0 0 10 0
2 20 0

2 2

 

a =
−
+

( . )
( . )
100 0
40 0

 

a = −2.5000

Use the sign convention to state the 
answer with its direction, units and the 
correct number of significant figures.

a = 2.50 m s−2 south
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b How long does she take to come to a stop?
Thinking Working
Write down the known quantities as 
well as the quantity you are finding. 
(The term ‘sifat’ may help you to recall 
them.) 

Apply the sign convention that north is 
positive and south is negative.

Take all the information that you can 
from the question:

• constant acceleration, so use 
equations for uniform acceleration

• ‘coming to a stop’ means that the 
final velocity is zero.

s = +20.0 m

vi = +10.0 m s−1

vf = 0.00 m s−1

a = −2.5000 m s−2

∆t = ?

Identify the correct equation to use. 
Since you now know four values, any 
equation involving ∆t will work.

v v a tf i= + ∆  

Substitute known values into the 
equation and solve for ∆t.

v v a tf i= + ∆  

∆t
v v

a
f i=
−

∆t =
−

−
( . ) ( . )

( . )
0 00 10 0

2 5000
 

∆t = 4.0000 s

State the answer with its units and the  
correct number of significant figures.

∆t = 4.00 s

c What is the average velocity of the snowboarder as she comes to a stop?
Thinking Working
Write down the known quantities 
as well as the quantity that you are 
finding.

Apply the sign convention that north is 
positive and south is negative.

Take all the information that you can 
from the question:

• constant acceleration, so we only 
need to find the average of the final 
and initial speeds.
vi = +10.0 m s−1

vf = 0.00 m s−1

vav = ?
Identify the correct equation to use.

v v vf iav = +( )1
2  

Substitute known values into the 
equation and solve for vav.

Include units with the answer.

v v vf iav = +( )1
2  

vav = +( )1
2

0 00 10 0. .
 

vav = 5.0000

Use the sign convention to state the 
answer with its direction, units and the 
correct number of significant figures.

vav = 5.00 m s−1 north

Worked example: Try yourself 3.4.1

USING THE EQUATIONS OF MOTION

A snowboarder in a race is travelling 15.5 m s−1 east as she crosses the finishing line. 
She then decelerates uniformly until coming to a stop over a distance of 30.0 m.

a Calculate her acceleration as she comes to a stop.

b How long does she take to come to a stop?

c What is the average velocity of the snowboarder as she comes to a stop?
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3.4 Review
SUMMARY

• The following equations can be used for situations 
in which there is a constant acceleration, where:

s is the displacement (m)
vi is the initial velocity (m s−1)
vf is the final velocity (m s−1)
a is the acceleration (m s−2)
Δt is the period of time (s).

• v v a tf i= + ∆

• s v v ti f= +( )1
2

∆

• s v t a ti= +∆ ∆
1
2

2

• s v t a tf= −∆ ∆
1
2

2

• v v asf i
2 2 2= +

• v
s
t

v vi f
av = =

+
∆ 2

• A sign and direction convention for motion in one 
dimension needs to be used with these equations.

KEY QUESTIONS

1 A cyclist has a uniform acceleration as they roll down 
a hill. Their initial speed is 5.09 m s−1. They travel a 
distance of 32.5 m and their final speed is 18.3 m s−1. 
Which equation should be used to determine their 
acceleration?
A v v a tf i= + ∆

B s v v ti f= +( )1
2

∆

C s v t a ti= +∆ ∆
1
2

2

D s v t a tf= −∆ ∆
1
2

2

E v v asf i
2 2 2= +

2 A new-model hydrogen vehicle travels with a uniform 
acceleration on a racetrack. It starts from rest and 
covers 445 m in 16.0 s.
a Calculate the magnitude of its average acceleration 

during this time.
b What is the final speed of the car in m s−1?
c What is the car’s final speed in km h−1?

3 An electric hybrid car starts from rest and accelerates 
uniformly in a positive direction for 3.10 s. It reaches a 
final speed of 19.9 m s−1.
a Calculate the magnitude of the acceleration of the 

hybrid car.
b What is the magnitude of the average velocity of the 

hybrid car during this time?
c What is the distance travelled by the hybrid car 

during this time?

4 During its launch phase, a space rocket accelerates 
uniformly from rest to 167 m s−1 upwards in 4.02 s, 
then enters a constant speed phase of 167 m s−1 for 
the next 5.40 s.
a Calculate the acceleration of the rocket in its initial 

launch phase.

b Calculate the combined distance (in km) the rocket 
travels during both phases of the flight.

c What is the final speed of the rocket in km h−1?
d What is the average speed of the rocket during the 

first 4.02 s?
e What is the average speed of the rocket during the 

total 9.42 seconds of motion?

5 While overtaking another cyclist, Charlie increases 
their speed uniformly from 4.12 m s−1 to 6.07 m s−1 
east over a time interval of 0.508 s.
a Calculate the magnitude of Charlie’s average 

acceleration during this time.
b How far does Charlie travel while accelerating?
c What is Charlie’s average speed during this time?

6 A diver enters a diving pool headfirst while travelling 
at 18.0 m s−1 downwards. The diver hits the water at ti 
= 0.00 s and stops after a downwards displacement of 
4.06 m. Consider the diver to be a single point located 
at their centre of mass and assume their acceleration 
through the water to be uniform.
a What is the magnitude of the average acceleration 

of the diver as the diver travels through the water?
b How long does the diver take to come to a stop?
c What is the velocity of the diver after they have 

dived through 2.00 m of water?
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35CHAPTER 3   |   LINEAR MOTION

7 A car is travelling along a straight road at 75.0 km h−1 
east. In an attempt to avoid an accident, the motorist 
has to brake suddenly and stop the car.
a What is the car’s initial speed in m s−1?
b If the reaction time of the motorist is 0.254 s, what 

is the displacement of the car before they are able 
to apply the brakes?

c Once the brakes are applied, the car has an 
acceleration of −6.70 m s−2. How far does the car 
travel while stopping?

d What is the total displacement of the car from the 
time the driver first notices the danger to when 
the car comes to a stop?

8 A billiard ball rolls from rest down a smooth ramp 
that is 8.00 m long. The acceleration of the ball is 
constant at 2.60 m s−2.

0

4.00 m

8.00 m

a What is the velocity of the ball when it is halfway 
down the ramp?

b What is the final velocity of the ball at the bottom 
of the ramp?

c How long does the ball take to roll the first 
4.00 m?

d How long does the ball take to travel the final 
4.00 m?

9 A cyclist, Nolan, is travelling at a constant speed 
of 12.2 m s−1 when they pass a stationary bus. The 
bus starts moving just as Nolan passes, and it 
accelerates uniformly at 1.50 m s−2.
a When does the bus reach the same speed as 

Nolan?
b How long does the bus take to catch Nolan?
c What distance has Nolan travelled before the bus 

catches up?
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3.5 Vertical motion
Until 500 years ago, it was widely believed that the heavier an object was, the faster 
it would fall. This was the theory proposed by Aristotle, and it lasted for 2000 years 
until the end of the Middle Ages. In the seventeenth century, the Italian scientist 
Galileo conducted experiments that showed that the mass of the object did not 
affect the rate at which it fell, as long as air resistance was not a factor.

It is now known that falling objects speed up because of gravity; however, many 
people still think that objects with a greater mass fall faster than objects of a lesser 
mass. This confusion often arises because they fail to consider the effects of air 
resistance. This section examines the motion of falling objects..

ANALYSING VERTICAL MOTION
Some falling objects are affected by air resistance more than others; for example, 
feathers and balloons. This is why these objects do not speed up much as they fall. 
However, if air resistance can be ignored, all bodies in free fall near the Earth’s 
surface will move with an equal downwards acceleration. The stroboscopic image 
in Figure 3.5.1 clearly shows an apple accelerating as it falls, since the vertical 
displacement of the apple between each photograph increases. In a vacuum, this 
acceleration would be the same for a feather, a bowling ball, or any other object. The 
mass of the object does not matter if air resistance is removed.

At the Earth’s surface, the acceleration due to gravity, g, is −9.80 m s−2, where the 
negative sign indicates a downwards direction. The acceleration of a body due to 
gravity is independent of its initial velocity and is the same whether the object has 
been thrown vertically upwards or is falling vertically downwards.

For example, a coin that is dropped from rest at t = 0.00 s will have an initial 
velocity of 0.00 m s−1. At t = 1.00 s it will be falling with a velocity of −9.80 m s−1 
and at t = 2.00 s with a velocity of −19.6 m s−1, and so on. As ∆t increases with each 
second, the coin’s velocity increases by −9.80 m s−1. The motion of a falling coin is 
illustrated in Figure 3.5.2.

However, if the coin was launched straight up at t = 0.00 s with an initial velocity 
of +19.6 m s−1, then at t = 1.00 s its velocity would be +9.80 m s−1 and at t = 2.00 s its 
velocity would be 0.00 m s−1. In other words, with each second of the coin’s upwards 
journey, its velocity would decrease by −9.80 m s−1. At the instant in time the velocity 
reaches 0.00 m s−1, the motion of the coin changes from upwards to downwards, which 
means it would accelerate downwards as described in the previous paragraph. This 
point in time also represents the time at which the coin reaches its maximum vertical 
displacement. The motion of a coin thrown vertically upwards is shown in Figure 3.5.3.

So, regardless of whether the coin is falling vertically downwards or is flipped 
vertically upwards, its speed changes at the same rate. The speed of the falling 
coin increases by −9.80 m s−1 each second and the speed of the rising coin decreases  
by −9.8 m s−1 each second. That means that the acceleration of the coin due to 
gravity is −9.80 m s−2, or 9.80 m s−2 downwards, in both cases.

FIGURE 3.5.1 A stroboscopic image of a free-
falling apple. The time elapsed between each 
image of the apple is the same but the vertical 
displacement increases during each period of 
time, which shows the apple is accelerating. 
Without air resistance, the two different mass 
apples accelerate at the same rate.
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vi = 0.00 m s–1 ti = 0.00 s

v = –9.80 m s–1

t = 1.00 s

vf = 19.6 m s–1

tf = 2.00 s

FIGURE 3.5.2 A falling coin.

v = +9.80 m s–1

t = 1.00 s

vi = +19.6 m s–1

ti = 0.00 s

vf = 0.00 m s–1 tf = 2.00 s

FIGURE 3.5.3 A coin thrown vertically upwards.

PHYSICSFILE

Galileo’s experiment carried  
out on the Moon
In 1971, David Scott went to great lengths 
to show that Galileo’s prediction was 
correct. As an astronaut on the Apollo 15 
Moon mission, he took a hammer and a 
feather on the voyage. He stepped onto 
the lunar surface, held the feather and 
hammer at the same height and dropped 
them together. As Galileo had predicted 
400 years earlier, in the absence of any 
air resistance, the two objects fell side 
by side as they accelerated towards the 
Moon’s surface at exactly the same rate.

Popular physicist, musician and TV 
presenter Professor Brian Cox repeated a 
version of this experiment in the world’s 
biggest vacuum chamber, the Space 
Simulation Chamber at NASA’s Space 
Power Facility in Ohio. Professor Cox set 
up a mechanist that would drop a bowling 
ball and a feather at exactly the same 
time. When the air was removed from the 
chamber, they filmed the two different 
masses accelerating for over 9 metres at 
exactly the same rate.

 
FIGURE 3.5.4 Astronaut David Scott dropping a feather and a hammer on the Moon. 
Professor Brian Cox dropping some feathers and a bowling ball in the world’s largest  
vacuum chamber.
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38 UNIT 1   |   MOTION, FORCES AND ENERGY

PHYSICS IN ACTION

Theories of motion: Aristotle and Galileo
Aristotle was a Greek philosopher who lived in the fourth 
century BCE. He was such an influential individual that his 
ideas on motion were generally accepted for nearly 2000 
years. Aristotle didn’t do experiments as we know them 
today, but simply thought about different bodies in motion 
to arrive at a plausible explanation for the way in which 
they moved.

Aristotle spent a lot of time classifying different animals 
and adopted a similar approach to his study of motion. 
His theory gave inanimate objects, such as rocks and rain, 
characteristics that were similar to living things. Aristotle 
then organised these objects into four terrestrial groups 
or elements: earth, water, air and fire (see Figure 3.5.5). 
He said that any object was a mixture of these elements in 
different proportions.

fire

air

waterearth

FIGURE 3.5.5 Aristotle’s four elements of the universe: earth, water, air 
and fire.

According to Aristotle, a body would move because of 
a tendency that could come from inside or outside of the 
body. An internal tendency would cause ‘natural’ motion 
and result in a body returning to its proper place. For 
example, if a rock, which is an earth substance, is held in 
the air and released, then its natural tendency would be to 
return to the Earth, i.e. it falls to the ground. Similarly, fire 
was thought to head upwards, to return to its proper place 
in the universe, i.e. the Sun.

An external push that acts when something is thrown 
or hit was the cause of ‘violent’ motion according to the 
Aristotelian model. In other words, an external push acted to 
take a body away from its proper place. For example, when 
an apple is thrown into the air, a violent motion carries the 
apple away from the Earth, but then the natural tendency of 
the apple takes over and it returns to the ground.

Aristotle’s theory worked quite well and could be used to 
explain the motion of many objects. However, there were 
also many examples that it could not successfully explain, 
such as why some solids floated while other solids sunk.

Aristotle explained the behaviour of a falling body by 
saying that its velocity depended on how much earth 
element it contained. This suggested that a 2.00 kg cat 
would fall twice as fast and in half the time as a 1.00 kg 
cat dropped from the same height. Many centuries later, 
Galileo Galilei (pictured in Figure 3.5.6) noticed that, at the 
start of a hailstorm, small hailstones arrived at the same 
time as large hailstones. This caused Galileo to doubt 
Aristotle’s theory, and so he set about finding a better 
explanation for the motion of freely falling bodies.

FIGURE 3.5.6 Galileo Galilei.

A famous story in science is that of Galileo dropping 
different masses from the Leaning Tower of Pisa in Italy. 
This story may or may not be true, but Galileo did perform 
a very detailed analysis of falling bodies. Galileo used 
inclined planes because freely falling bodies moved too 
fast to analyse. He completed detailed experiments that 
showed conclusively that Aristotle was in fact incorrect.

By using a water clock to time balls as they rolled from 
rest down different inclines, he was able to show that the 
balls were accelerating, and that the distance they travelled 
was proportional to the square of the period of time, i.e.  
d ∝ ∆t2.

Galileo found that this relationship also held true when 
he inclined the plane at larger and larger angles, allowing 
him to conclude that freely falling bodies actually fall with a 
uniform acceleration.
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Since the acceleration of a free-falling body is constant, it is appropriate to 
use the equations that were studied in the previous section, under ‘Equations for 
uniform acceleration’. It is necessary to specify whether up or down is positive when 
doing these problems, though you can simply follow the mathematical convention 
of regarding up as positive, which would mean the acceleration due to gravity would 
always be −9.80 m s−2. The variable for uniform acceleration, a, in these equations 
can be replaced by the variable for gravitational acceleration, g, in calculations 
involving vertical motion.

Worked example 3.5.1

VERTICAL MOTION

A construction worker accidentally knocks a brick from a building so that it falls 
vertically a distance of 47.0 m to the ground. Use g = −9.80 m s−2 and ignore air 
resistance when answering these questions.

a How long does the brick take to fall halfway, to 23.5 m?

Thinking Working

Write down the known quantities and 
the quantity that you need to find. 
(The term ‘sifat’ may help you to recall 
them.)

Apply the sign convention that up is 
positive and down is negative.

The brick starts at rest, so: 

s = −23.5 m

vi = 0.00 m s−1

vf = ? m s−1

g = −9.80 m s−2

∆t = ?

Identify the correct equation for 
uniform acceleration to use, but 
substitute the a for g.

s v t g ti= +∆ ∆
1
2

2

Substitute known values into the 
equation and solve for ∆t.

Think about whether the value seems 
reasonable.

( . ) ( . ) ( . )− = + −23 5 0 00
1
2

9 80 2∆ ∆t t  

( . ) ( . )− = −23 5 4 90 2∆t  

∆t =
−
−

( . )
( . )

23 5
4 90

 

∆t = 2 18996.  
∆t = 2 19.  s 

b How long does the brick take to fall all the way to the ground?

Thinking Working

Write down the known quantities and 
the quantity that you need to find. (The 
term ‘sifat’ may help you to recall them.)

Apply the sign convention that up is 
positive and down is negative.

s = −47.0 m

vi = 0.00 m s−1 

vf = ? m s−1

g = −9.80 m s−2 

∆t = ?

Identify the correct equation for 
uniform acceleration to use, but 
substitute the a for g.

s v t g ti= +∆ ∆
1
2

2 

Substitute known values into the 
equation and solve for t.

Think about whether the value seems 
reasonable.

Notice that the brick takes 2.19 s to 
travel the first 23.5 m and only 0.91 s 
more to travel the final 23.5 m. This is 
because it is accelerating.

( . ) ( . ) ( . )− = + −47 0 0 00
1
2

9 80 2∆ ∆t t  

( . ) ( . )− = −47 0 4 90 2∆t  

∆t =
−
−

( . )
( . )

47 0
4 90  

∆t = 3 09707.  
 ∆t = 3.10 s

PHYSICSFILE

Strength of gravity
The acceleration due to gravity, g, on 
Earth varies slightly from the accepted 
value of −9.80 m s−2 depending on the 
location. The reasons for this will be 
studied in Unit 3 Physics. On the Moon, 
the strength of gravity, g, is much 
weaker than on Earth, which causes 
falling objects to accelerate at the 
much lower rate of −1.60 m s−2. Other 
planets and bodies in the Solar System 
have different values of g depending on 
their mass and radius. The value of g at 
various locations in the Solar System is 
provided in Table 3.5.1.

TABLE 3.5.1 Acceleration due to gravity at 
different locations on Earth, and on other 
bodies in the Solar System.

Location Acceleration due to 
gravity (m s−2)

Perth −9.794

South Pole −9.832

Equator −9.780

Moon −1.600

Mars −3.600

Jupiter −24.600

Pluto −0.670

In Unit 2 Physics you can assume that 
acceleration due to gravity is always 
−9.80 m s−2.
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c What is the final velocity of the brick as it hits the ground?

Thinking Working

Write down the known quantities and 
the quantity that you need to find. 
(The term ‘sifat’ may help you to recall 
them.) 

Apply the sign convention that up is 
positive and down is negative.

s = −47.0 m

vi = 0.00 m s−1 

vf = ? m s−1

g = −9.80 m s−2 

∆t = 3.09707 s

Identify the correct equation to use. 
Since you now know four values, any 
equation involving v will work, but 
substitute the a for g.

v v g tf i= + ∆  

Substitute the known values into the 
equation and solve for vf. 

Think about whether the value seems 
reasonable.

vf = + −( . ) ( . )( . )0 00 9 80 3 09707
vf = −30 3513.
vf = 30.4 m s−1

Use the sign and direction convention 
to describe the direction of the final 
velocity.

v = 30.4 m s−1 downwards

Worked example: Try yourself 3.5.1

VERTICAL MOTION

A construction worker accidentally knocks a hammer from a building so that it falls 
vertically a distance of 60.0 m to the ground. Use g = −9.80 m s−2 and ignore air 
resistance when answering these questions.

a How long does the hammer take to fall halfway, to 30.0 m?

b How long does it take the hammer to fall all the way to the ground?

c What is the velocity of the hammer as it hits the ground?

Remember that when an object is thrown vertically up into the air, it will 
eventually reach a point where its velocity is zero for an instant in time, but not 
for any period of time, before returning back down. So, the vertical velocity of the 
object decreases as the object rises, is zero at the instant it achieves its maximum 
height, and then increases vertically downwards as the object falls. Throughout this 
motion, however, the object is still in the same gravitational field, so g remains at 
−9.80 m s−2. Knowing that the velocity of an object thrown into the air is zero at the 
top of its flight allows you to calculate the maximum height reached.

Worked example 3.5.2

MAXIMUM HEIGHT PROBLEMS

On winning a tennis match the victorious player, Corey, smashes the ball vertically 
into the air at 27.5 m s−1. In the following questions ignore air resistance and use  
g = −9.80 m s−2.
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a Determine the maximum height reached by the ball.

Thinking Working

Write down the known quantities and 
the quantity that you need to find. 
(The term ‘sifat’ may help you to recall 
them.) 

At the maximum height the velocity is 
zero.

Apply the sign convention that up is 
positive and down is negative.

s

v

v

g

t

i

f

=

= +

=

= −
=

−

−

−

?

.

.

.

?

m

ms

ms

ms

27 5

0 00

9 80

1

1

2

∆

Identify the correct equation to use, 
but substitute the a for g.

v v gsf i
2 2 2= +  

Substitute known values into the 
equation and solve for s. s

v v
g

f i=
−2 2

2
 

s =
− +
−

( . ) ( . )
( . )

0 00 27 5
2 9 80

2 2

 

s = +38 5841.  
s = +38 6. m 
i.e. the ball reaches a height of 38.6 m 
above the racquet.

b Calculate the time that the ball takes to return to its starting position.

Thinking Working

To work out the time the ball is in the 
air, first calculate the time it takes to 
reach its maximum height.

Write down the known quantities and 
the quantity that you need to find.

v

v

g

s

t

i

f

= +

=

= −
=
=

−

−

−

27 5

0 00

9 80

38 5481

1

1

2

.

.

.

.

?

ms

ms

ms

m

∆

 

Identify the correct equation to use, 
but substitute the a for g.

v v g tf i= + ∆  

Substitute known values into the 
equation and solve for ∆t. ∆t

v v
g

f i=
−

 

∆t =
− +

−
( . ) ( . )

( . )
0 00 27 5

9 80
 

∆t = 2 80612.  to maximum height
∆t = 2 80612.  to return to the racquet
total ∆t = 5 61224.  
total  s∆t = 5 61.

Worked example: Try yourself 3.5.2

MAXIMUM HEIGHT PROBLEMS

On winning a cricket match, a fielder throws a cricket ball vertically into the air at 
15.5 m s−1. In the following questions, ignore air resistance and use g = −9.80 m s−2.

a Determine the maximum height reached by the ball.

b Calculate the time that the ball takes to return to its starting position.
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3.5 Review
SUMMARY

• If air resistance can be ignored, all bodies falling 
freely near the Earth will move with the same 
constant acceleration.

• The acceleration due to gravity is represented 
by g and is equal to −9.80 m s−2 if the direction 
towards the centre of the Earth is considered to be 
negative.

• The equations for uniform acceleration can 
be used to solve vertical motion problems by 
substituting the variable a, for the constant g. It is 
necessary to specify and use a sign convention, 
such as up is positive and down is negative.

KEY QUESTIONS

For these questions, ignore the effects of air resistance and 
assume that the acceleration due to gravity is −9.80 m s−2 
unless instructed otherwise.

1 A ball is thrown into the air. Describe how the velocity 
of the ball changes when it leaves the hand up until 
the instant before it hits the hand again.

2 Angus inadvertently drops an egg while baking a cake, 
and the egg falls vertically towards the ground. Which 
one of the following statements correctly describes 
how the egg falls?
A The egg’s acceleration increases.
B The egg’s acceleration is constant.
C The egg’s velocity is constant.
D The egg’s acceleration decreases.

3 Yvette is an Olympic trampolinist and is practising 
some routines. Which one or more of the following 
statements correctly describes Yvette’s motion at 
the instant she is at the highest point of the bounce? 
Assume that her motion is vertical.
A She has zero velocity.
B Her acceleration is zero.
C Her acceleration is upwards and downwards.
D Her acceleration is always downwards.

4 A window cleaner working on the Bell tower accidently 
drops her mobile phone. The phone falls vertically 
towards the ground with an acceleration of −9.80 m s−2.
a Determine the velocity of the phone after 3.04 s.
b How fast is the phone moving after it has fallen 

30.0 m?
c What is the average velocity of the phone during a 

fall of 30.0 m?

5 A person tosses a marble straight up into the air at 
5.18 m s−1 and then catches it at the same height from 
which it was thrown. Ignore air resistance.
a Is the acceleration of the marble on the way up the 

same as, less than, or greater than, its acceleration 
on the way down? Justify your answer.

b Is the magnitude of the launch velocity of the 
marble the same as, less than or greater than the 
magnitude of its landing velocity? Justify your 
answer.

6 A rubber ball is bounced off a concrete floor so that 
it travels straight up into the air, reaching its highest 
point after 1.58 s.
a What is the initial velocity of the rubber ball just as 

it leaves the ground?
b What is the maximum height reached by the ball?

7 A book is knocked off a bench and falls vertically to 
the floor. If the book takes 0.400 s to fall to the floor, 
calculate the following descriptions of its motion.
a What is the book’s velocity the instant before it 

lands?
b From what height did the book fall?
c How far did the book fall during the first 0.200 s?
d How far did the book fall during the final 0.200 s?

8 Jet the labrador is playing with a new toy. When Jet 
drops a tennis ball into a launcher, it shoots the ball 
into the air for him to catch. The ball travels vertically 
upwards into the air. Being a very clever dog, Jet 
notices that the ball takes 4.08 s to return to its 
starting position.
a How long does the tennis ball take to reach its 

maximum height?
b Calculate the velocity of the ball the instant it left 

the launcher.
c What was the maximum height reached by the 

tennis ball?
d What was the velocity of the ball as it returned to its 

starting point?
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3.5 Review continued
9 Two physics students conduct the following experiment 

from a very high bridge. Asuka drops a 1.57 kg shot-
put from a vertical height of 60.0 m and, at exactly the 
same time, Jordan throws a 109 g mass with an initial 
downwards velocity of 10.0 m s−1 from a point 10.0 m 
above Asuka.
a How long does it take Asuka’s shot-put to reach the 

ground?
b How long does it take Jordan’s 109 g mass to reach 

the ground?

10 At the start of a football match, the umpire bounces 
the ball off a rubber plate so that it travels vertically 
upwards and reaches a height of 15.0 m.
a How long does the ball take to reach this maximum 

height?
b One of the players is able to leap and reach to a 

height of 4.00 m with their hand. How long after the 
bounce should this player try to make contact with 
the ball as it is on its way down?

11 A stone is held out over the edge of a seaside cliff and 
thrown vertically upwards at ti = 0.00 s with an initial 
velocity of 8.00 m s−1. It lands in the sea below at  
tf = 3.00 s. Calculate:
a the maximum height above the top of cliff reached 

by the stone if it left the thrower’s hand 1.90 m 
above the level of the cliff

b the time taken by the stone to reach its maximum 
height

c the height of the cliff above the sea.
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For the following questions, ignore air resistance and use  
g = −9.80 m s−2 unless indicated otherwise.

1 A car travels at 95.0 km h−1 along a freeway. What is its 
speed in m s−1?

2 A cyclist travels at 15.3 m s−1 during a sprint finish. 
What is this speed in km h−1?

The following information relates to questions 3 and 4.
An athlete in training for a marathon runs 15.4 km north 
along a straight road before realising that they have 
dropped their drink bottle. The athlete turns around and 
runs back 5.7 km to find the bottle, then resumes running 
in the original direction. After running for 3.00 hours, the 
athlete reaches 20.2 km from their original starting position 
and stops.

3 Calculate the average speed of the athlete in km h−1.

4 Calculate the average velocity in:
a km h−1

b m s−1.

5 A ping pong ball is falling vertically at −6.00 m s−1 as it 
hits the floor. It rebounds at +4.50 m s−1 up. What is its 
change in speed during the bounce?

6 A car is moving in a positive direction. It approaches 
a red light and slows down. Which of the following 
statements correctly describes its acceleration and 
velocity as it slows down?
A The car has positive acceleration and negative 

velocity.
B The car has negative acceleration and positive velocity.
C Both the velocity and acceleration of the car are 

positive.
D Both the velocity and acceleration of the car are 

negative.

7 A skier is travelling along a horizontal ski run at a speed 
of 15.6 m s−1. After falling over, the skier takes 2.55 s to 
come to rest. Calculate the average acceleration of the 
skier as they stop.

8 The following graph shows the position of a motorbike 
along a straight stretch of road as a function of 
time. The motorcyclist starts 200.0 m north of an 
intersection.
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a At what time interval is the motorcyclist travelling in 
a northerly direction?

b At what time interval is the motorcyclist travelling in 
a southerly direction?

c At what time intervals is the motorcyclist stationary?
d At what time is the motorcyclist passing back 

through the intersection?

9 For each of the activities below, indicate which of the 
following velocity–time graphs best represents the 
motion involved.

v

t
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v

t

B
v

t

C

v

t

D
v
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E

a A car comes to a stop at a red light.
b A swimmer is travelling at a constant speed.
c A motorbike starts from rest with uniform 

acceleration.

Chapter review

KEY TERMS

acceleration
air resistance
centre of mass
dimensional analysis

displacement
distance travelled
free fall 

magnitude
position
speeds

03
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10 This velocity–time graph is for an Olympic road cyclist 
as they travel, initially north, along a straight section of 
the track.
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a Estimate the displacement of the cyclist during the 
journey.

b Calculate the magnitude of the average velocity of 
the cyclist during this 11.3 s interval.

c Determine the acceleration of the cyclist at t = 1.0 s.
d Calculate the acceleration of the cyclist at t = 10.0 s.
e Which one or more of the following statements 

correctly describes the motion of the cyclist?
A They are always travelling north.
B They travel south during the final 2.0 s.
C They are stationary at t = 8.0 s.
D They return to the starting point after 11.0 s.

11 A car starts from rest and has a constant acceleration 
of 3.59 m s−2 west for 4.51 s. What is its final velocity?

12 A jet-ski starts from rest and accelerates uniformly 
east. If it travels 2.80 m in its first second of motion, 
calculate:
a its acceleration
b its velocity at the end of the first second
c the displacement of the jet-ski as it travels in its next 

one-second period of time from ti = 1.00 s to  
tf = 2.00 s.

13 A skater is travelling south along a horizontal skate rink 
at a speed of 10.3 m s−1. After falling over, the skater 
travels in a straight line for 10.6 m before coming to 
rest. Calculate the answers to the following questions 
about the skater’s movement.
a What is the average acceleration of the skater?
b How long does it take the skater to come to a stop?

14 The graph shows the position of Candice, who is 
dancing across a stage.
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a What is Candice’s starting position?
b In which of the sections (A–D) is Candice at rest?
c In which of the sections (A–D) is Candice moving in 

a positive direction. Determine the velocity during 
the section by looking at the graph, without using 
calculations. Explain how you arrived at the answer.

d In which of the sections (A–D) is Candice moving 
with a negative velocity and what is the magnitude 
of this velocity?

e Calculate Candice’s average speed during the 25.0 s 
of motion.

15 The velocity–time graphs for a bus and a bicycle 
travelling along the same straight stretch of road are 
shown below. The bus is initially at rest and starts 
moving as the bicycle passes it.
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a What is the magnitude of the initial acceleration of 
the bus?

b At what time does the bus overtake the bicycle? 
Determine the time by looking at the graph, without 
using calculations.

c How far has the bicycle travelled before the bus 
catches it?

d What is the magnitude of the average velocity of the 
bus during the first 8.0 s?

16 a Draw an acceleration–time graph for the bus 
discussed in Question 15.

b Use your acceleration–time graph to determine the 
change in velocity of the bus over the first 8.0 s.

17 A slingshot is used to launch a marble vertically 
into the air at 39.2 m s−1. Discuss the velocity and 
acceleration of the marble as it travels to its maximum 
height. Indicate the time that it takes to reach the top. 
Consider up as positive.
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18 A golfer mis-hits a golf ball straight up into the air. 
Which one of the following statements best describes 
the acceleration of the ball while it is in the air?
A The acceleration of the ball decreases as it travels 

upwards, becoming zero at the point in time it 
reaches its highest point.

B The acceleration is constant as the ball travels 
upwards, then reverses direction as the ball falls 
down again.

C The acceleration of the ball is greatest when the ball 
is at the highest point.

D The acceleration is constant for the entire time the 
ball is in the air.

19 Steph tosses a rock vertically into the air. Which of the 
options below correctly fills the blanks of the following 
statement about the rock’s motion?
On its way upwards, the rock has 
________________________ velocity and 
______________________ acceleration. At the highest 
point, the rock has _____________________ velocity 
and _____________________ acceleration. On its way 
downwards, the rock has ____________________ velocity 
and ______________________ acceleration.
A upwards; upwards; zero; downwards; downwards; 

downwards
B upwards; downwards; zero; downwards; downwards; 

downwards
C upwards; upwards; zero; zero; downwards; 

downwards
D upwards; downwards; zero; zero; downwards; 

downwards

20 After winning a tennis match, Claire hits a tennis ball 
vertically into the air at 30.0 m s−1. The v–t and a–t 
graphs for the tennis ball are shown below. Use the 
graphs or the equations for uniform acceleration to 
answer the following questions. Use g = −10.0 m s−2 
for these questions. Assume the motion in question is 
symmetrical, starting and ending at the same point.
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a What is the maximum height reached by the ball?
b What is the time that the ball takes to return to its 

starting position?
c What is the velocity of the ball 5.0 s after Claire  

hits it?
d What is the acceleration of the ball at its maximum 

height?

21 A hot-air balloon is 80.0 m above the ground and 
travelling vertically downwards at a constant −8.00 m s−1 
when one of the passengers, Tom, accidentally drops a 
coin over the side.

8.00 m s–1

     80.0 m

CHAPTER REVIEW CONTINUED
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a How long does the balloon take to reach the ground?
b What is the velocity of the coin as it reaches the 

ground?
c How long after the coin reaches the ground does the 

balloon touch down?
The following information relates to questions 22 and 23.
During a game of minigolf, Renee putts a ball so that it hits 
an obstacle and rebounds vertically up into the air, reaching 
its highest point after 1.50 s.

22 What was the initial velocity of the ball the instant it is 
launched into the air?

23 Calculate the maximum height reached by the ball.
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Chapter 3 Linear motion

Section 3.1 Displacement, speed and velocity

Worked example: Try yourself 3.1.1
CALCULATING VELOCITY AND CONVERTING UNITS

Sally is an athlete performing a training routine by running back and forth along a straight stretch of running track. Sally 
jogs 108.0 m west in a time of 20.0 s, then turns and walks 165.0 m east in a further 45.0 s before stopping.

a Calculate Sally’s velocity in m s−1.

Thinking Working

Calculate the displacement, remembering that total 
displacement is the sum of individual displacements. 
Sally’s total journey consists of two displacements: 
108.0 m west and 165.0 m east. Take east to be the 
positive direction.

s = sum of displacements

s = 108.0 m west + 165.0 m east

s = (−108.0) + (165.0)

s = + 57.0 m or 57.0 m east

Work out the total time taken for the journey. ∆t = (20.0) + (45.0) = 65.0 s 

Substitute the values into the velocity equation. Displacement, s, is 57.0 m east.

Time taken, ∆t, is 65.0 s.

v
s
t

=
∆

 

v =
( . )
( . )
57 0
65 0

 

v = 0 87692.  

v = 0.877 m s−1

Velocity is a vector, so a direction must be given. v = 0.877 m s−1 east

b Calculate the magnitude of Sally’s velocity in km h−1.

Thinking Working

Convert from m s−1 to km h−1 by multiplying by 3.60. km h−1 = m s−1 × 3.60 

v = (0.87692)(3.60)

v = 3.1569

v = 3.16 km h−1 east

As the magnitude of the velocity is needed, the direction 
is not required in this answer.

magnitude of v = 3.16 km h−1
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c What is Sally’s speed in m s−1?

Thinking Working

Calculate the distance, remembering that distance is the 
length of the path covered over the entire journey. The 
direction does not matter. Sally travels 108.0 m in one 
direction and then 165.0 m in the other direction.

d = (108.0) + (165.0)

d = 273.0 m

Work out the total time taken for the journey. ∆t = (20.0) + (45.0) = 65.0 s

Substitute the values into the speed equation. Distance, d, is 273.0 m.

Time taken, ∆t, is 65.0 s.

v
d
t

=
∆

v =
( . )
( . )
273 0
65 0

v = 4 2000.  

v = 4.20 m s−1

d What is Sally’s speed in km h−1?

Thinking Working

Convert from m s−1 to km h−1 by multiplying by 3.60. km h−1 = m s−1 × 3.60

v = (4.2000)(3.60)

v = 15.120

v = 15.1 km h−1

Section 3.1 Review

KEY QUESTIONS SOLUTIONS
1 a average speed, vav = 

distance travelled
time taken

= = =
d
t∆

( . )
( . )( )

( . )400 0
2 00 60

400 0
(( )120

     vav = 3.3333 
   vav = 3.33 m s−1

b average velocity, vav
 

=
 

displacement
time taken

= =
s
t∆

( . )
( )
0 0
120

     vav = 0.00 m s−1

 Her displacement is zero because the initial (or starting) and the final (or finishing) positions are the same.

2 B and C. The distance travelled is (25.0)(10) = 250.0 m, but the displacement is zero because the swimmer’s initial 
and final positions are the same.

3 a displacement = final position − initial position
  s = Xf − Xi

  s = (40.0) − (0.0)
  s = +40.0 cm

     distance travelled, d = 40.0 cm
b displacement = final position − initial position
  s = Xf − Xi

  s = (40.0) − (50.0)
  s = −10.0 cm
 distance travelled, d = 10.0 cm
c displacement = final position − initial position
  s = Xf − Xi

  s = (70.0) − (50.0)
  s = +20.0 cm
 distance travelled, d = 20 cm
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d displacement = final position − initial position
  s = Xf − Xi

  s = (70.0) − (50.0)
  s = +20.0 cm
 distance covered, d = (50.0) + (30.0)
  d = 80.0 cm

4 a d = (50.0) + (30.0) = 80.0 km
b S = S1 − S2 
  s = 50.0 km north + 30.0 km south
  s = (50.0) + (−30.0)
  s = +20.0 km or 20.0 km north

5 a The basement is 10.0 m downwards or −10.0 m from the ground floor starting position. The displacement can be 
calculated using the following equation:

 s = Xf − Xi 
 s = (−10.0) − (0.0)
 s = −10.0 m or 10.0 m downwards
b The total displacement from the basement to the top floor is 60.0 m upwards. This can be calculated using the 

following equation:
 s = Xf − Xi 
 s = (+50.0) − (−10.0)
 s = +60.0 m or 60.0 m upwards
c The total distance travelled is 70.0 m.
 d = (10.0) + (10.0) + (50.0) = 70.0 m
d The top floor is 50.0 m upwards from the starting position on the ground floor. This can be calculated using the 

following equation:
 s = Xf − Xi 
 s = (50.0) − (0.0)
 s = +50.0 m or 50.0 m upwards

6 a average speed, vav =
d
t∆

   vav =
( . )
( . )
400 0
12 0

   vav = 33.333 

   vav = 33.3 m s−1

b The car travelled a distance of 25.0 m. This can be calculated using the following method:

  average speed, v
tav

d
=
∆

   d = vavΔt
   d = (33.3)(0.750)

  d = 25.000
  d = 25.0 m

7 a  90.0 min = 
90 0
60 0

.

.
  = 1.5000
  = 1.50 h

 average speed, v
d
tav = ∆

   
vav =

( . )
( . )
25 0
1 50

   vav  = 16.666

   vav  = 16.7 km h−1
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b To convert from km h−1 to m s−1, you need to divide by 3.60, so:

 
ms

kmh−
−

=1
1

3 60.

  
vav =

( . )
( . )
16 666

3 60

  vav = 4.6296

   vav = 4.63 m s−1

8 a average speed, v
d
tav = ∆

    
vav =

( . )
( . )
9 00
10 0

    vav = 0.90000
    vav = 0.900 m s−1

b displacement, S = S1 − S2 
  S = (+5.00) + (−4.00) 
  s = +1.00 m, or 1.00 m east

  average velocity, v
s
tav = ∆

  
vav =

+( . )
( . )
1 00

10 0

  vav = +0.10000
  vav = +0.100 m s−1, or 0.100 m s−1 east

9 a average speed, v
d
tav = ∆
, with 15.0 minutes equal to 0.250 hours

  vav =
( . )

( . )
2 50
0 250

  
vav = 10.000

  vav = 10.0 km h−1

b average velocity, ms
kmh−

−

=1
1

3 60.

  
 vav =

( . )
( . )
10 000

3 60
 

   vav = 2.7777
   vav = 2.78 m s−1 south

10 a distance travelled, d = (10.0) + (3.0) + (8.0 to finish 15.0 km north of the start)

   d = 21.0 km
b displacement, S = S1 + S2 + S3 
  s = (+10.0) + (−3.0) + (+8.0) 

    s = +15.0 km, or 15.0 km north

c average speed, v
d
tav = ∆

  
vav =

( . )
( . )
21 0
1 50

  vav = 14.000

   vav = 14.0 km h−1

d average velocity, v
s
tav = ∆

  vav =
+( . )
( . )
15 0

1 50

  vav = +10.000

   vav = +10.0 km h−1, or 10.0 km h−1 north
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Section 3.2 Acceleration

Worked example: Try yourself 3.2.1
CHANGE IN SPEED AND VELOCITY 1

A golf ball is dropped onto a wooden floor and strikes the floor at 9.00 m s−1. It then rebounds at 7.00 m s−1.

a Calculate the change in speed of the ball.

Thinking Working

Find the values for the initial speed and the final speed of 
the ball.

vi = 9.00 m s−1

vf = 7.00 m s−1

Substitute the values into the change in speed equation:  
∆v = vf − vi

∆v = vf − vi

∆v = 7.00 − 9.00

∆v = −2.00 m s−1

Note that speed is a scalar quantity 
so the negative value indicates a 
decrease in magnitude, as opposed 
to a negative direction.

b What is the change in velocity of the ball?

Thinking Working

Apply the sign convention to replace the directions. vi = 9.00 m s−1 down

vi = −9.00 m s−1

vf = 7.00 m s−1 up

vf = +7.00 m s−1

As the change in velocity equation is a vector subtraction 
equation, reverse the direction of vi to get −vi, then add 
the two vectors.

vi = −9.00 m s−1

−vi = +9.00 m s−1

Substitute the values into the vector addition equation:

∆v = vf + (−vi) 

∆v = vf + (−vi)

 = (+7.00) + (+9.00)

 = +16.0 m s−1

Apply the sign convention to describe the direction. ∆v = 16.0 m s−1 up
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Worked example: Try yourself 3.2.2
CHANGE IN SPEED AND VELOCITY 2

A netball is dropped vertically onto a court and strikes the surface at 9.00 m s−1. It then rebounds upwards at 
7.00 m s−1. The contact time with the court is 35.0 milliseconds.

Calculate the average acceleration of the ball during its contact with the court.

Thinking Working

Note the values you will need to find in order to calculate 
the average acceleration are initial velocity, final velocity 
and period of time.

Convert 35.0 ms into s by multiplying by 10−3, as the 
symbol m, for milli, represents 10−3.

vi = −9.00 m s−1

−vi = +9.00 m s−1

vf = +7.00 m s−1

∆v = vf  − vi 

∆v = (+7.00) – (+9.00)

∆v = +16.00 m s−1

∆t = 35.0 ms

∆t = 35.0 × 10−3

∆t = 3.50 × 10−2 s

Substitute the values into the average acceleration 
equation. a = change in velocity

time taken

a
v
t

=
∆
∆

a =
+

× −

( . )
( . )

16 00
3 50 10 2

a = +457.143

a = +457 m s−2

Acceleration is a vector, so you must include a direction 
in your answer.

a = 457 m s−2 up

Section 3.2 Review

KEY QUESTIONS SOLUTIONS

1 ∆v = vf − vi

 ∆v = (3.00) − (10.0)

 ∆v = −7.00

 So the change in speed is −7.00 km h−1.

 Note that speed is a scalar, so the negative value indicates a decrease in magnitude rather than a negative direction.

2 Down is negative, so the initial velocity is −5.00 m s−1.

 ∆v = vf − vi 
 ∆v = vf + (−vi)

 ∆v = (0) + (+5.00)

 ∆v = +5.00 m s−1 or 5.00 m s−1 up

 Note that velocity is a vector, so the vector subtraction equation becomes a vector addition of the opposite of the 
initial velocity to the final velocity.

3 Down is negative, so the initial velocity is −6.00 m s−1.

 ∆v = vf − vi 
 ∆v = vf + (−vi)

 ∆v = (+3.00) + (+6.00)

 ∆v = +9.00 m s−1

 ∆v = 9.00 m s−1 up
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4 a
v
t

=
∆
∆

 

 a
v v
t t
f i

f i

=
−
−

 

 a =
−
−

( ) ( . )
( : : . ) ( : : . )

0 7 50
90 00 00 00 89 59 58 50

 

 a =
−( . )
( . )
7 50

1 50

 a = −5.0000
a = 5.00 m s−2 south

5 a = 
change in velocity

time taken

 a
v
t

=
∆
∆

 

 a
v v
t t
f i

f i

=
−
−

 

 
a =

+ −
−

( ) ( . )
( . ) ( . )

155 0 00
3 50 0 00

 

 a = +44.2857

 a = 44.3 m s−2 up

6 a ∆v = vf − vi 
  ∆v = (15.2) − (25.7)

 ∆v = −10.500
 ∆v = −10.5 m s−1

 Note that speed is a scalar, so the negative value indicates a decrease in magnitude as opposed to a negative 
direction.

b East is positive and west is negative, so the final velocity is −15.2 m s−1, and the opposite of the initial velocity is 
−25.7 m s−1.

  ∆v = vf − vi 
  ∆v = vf + (−vi)

  ∆v = (−15.2) + (−25.7)

  ∆v = −40.900

  ∆v = 40.9 m s−1 west

c a = 
change in velocity

time taken

 a
v
t

=
∆
∆

 a =
−( . )
( . )

40 900
0 0535

 

 a = −764.49
 a = 764 m s−2 west

7 a ∆v = vf − vi

  ∆v = (8.08) − (0.00)
 ∆v = 8.08 m s−1

 b ∆v = vf − vi 
  ∆v = vf + (−vi)

 ∆v = (−8.08) + (0.00)
 ∆v = −8.08 m s−1

 ∆v = 8.08 m s−1 south
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c a = 
change in velocity

time taken

 a
v

t tf i

=
−
∆

  

 a =
−
−

( . )
( . ) ( . )

8 08
1 25 0 00

 a = −6.46400
 a = 6.46 m s−2 south

8  a
v v

t
f i=
−
∆

 ∆t
v v

a
f i=
−

 ∆t =
−( . ) ( . )

( . )
30 0 10 0

3 00

 ∆t = 6.6666

 ∆t = 6.67 s

9 a
v v

t
f i=
−
∆

 ∆t
v v

a
f i=
−

 ∆t =
−

−
( . ) ( . )

( . )
0 00 20 0

2 50
 

 ∆t = 8.0000

 ∆t = 8.00 s

10 a
v v

t
f i=
−
∆

 v v a ti f= − ∆

 vi = − −( . ) ( . )( . )0 00 3 00 4 00  

 vi = +12.0

 vi = 12.0 m s−1

Section 3.3 Graphing position, velocity and acceleration over time

Worked example: Try yourself 3.3.1
ANALYSING A POSITION–TIME GRAPH

Use the graph shown in Worked example 3.3.1 to answer the following questions.

a What is the velocity of the cyclist between E and F?

Thinking Working

Determine the change in position 
(displacement) of the cyclist between E and 
F using:

s = final position − initial position
s x xf i= −  

At E, xi = 300.0 m

At F, xf = 0.0 m

s = (0.0) − (300.0)

s = −300.0 m or 300.0 m backwards (towards the starting point)

Determine the time taken to travel from E 
to F.
∆t t tf i= −   

At E, ti = 80.0 s

At F, tf = 100.0 s

∆t = (100.0) − (80.0)

∆t = 20.0 s
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Calculate the gradient of the graph between 
E and F using:

gradient of x−t graph = 
rise
run

 = 
Δx
Δt

Remember that ∆x = s.

gradient =
∆
∆
x
t
 

gradient =
−( . )
( . )
300 0
20 0

gradient = −15.0

State the velocity, using:

gradient of x−t graph = velocity

Velocity is a vector quantity, so a direction 
must be given.

Since the gradient is −15.0, the velocity is −15.0 m s−1 or 15.0 m s−1 
backwards (towards the starting point).

b Describe the motion of the cyclist between D and E.

Thinking Working

Interpret the shape of the graph between D 
and E.

The graph is flat between D and E, indicating that the cyclist’s position 
is not changing during this time. So, the cyclist is not moving. If the 
cyclist is not moving, the velocity is 0.0 m s−1.

You may confirm the result by calculating 
the gradient of the graph between D and E 
using:

gradient of x−t graph = 
rise
run

 = 
Δx
Δt

Remember that ∆x = s.

gradient = 
(0.00)
(20.0)

gradient = 0.00

Since the gradient is 0.00, the velocity is 0.00 m s−1.

Worked example: Try yourself 3.3.2
ANALYSING A VELOCITY–TIME GRAPH

Use the graph shown in Worked example 3.3.2 to answer the following questions.

a What is the displacement of the car from 4.0 to 6.0 s?

Thinking Working

Displacement is the area under the graph. 
You must therefore find the area under the 
graph for the period of time for which you 
want to calculate the displacement.

As s = v∆t or s = ∆t × v, the base, b, is ∆t and 
height, h, is v.

Use s = b × h for squares and rectangles.

Use s = 
1

2
 (b × h) for triangles.

Ve
lo

ci
ty

 (m
 s–1

)

–2
–4

0
2
4
6
8

Time (s)1 2 3 4 5 6 7 8 9
Area = –4.0 m

The area from 4.0 to 6.0 s is a triangle, so:

s = 
1

2
 (b × h)

s = 
1

2
 (2.0)(−4.0)

s = −4.0000

Displacement is a vector quantity, so a 
direction is needed.

displacement = 4.0 m west
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b What is the average velocity of the car from 4.0 to 6.0 s?

Thinking Working

Identify the equation and variables, and apply the sign 
convention.

v = 
s
Δt

s = −4.0 m

∆t = 2.0 s

Substitute values into the equation:

v = 
s
Δt

v
s
t

=
∆  

v =
−( . )
( . )

4 0
2 0  

v = −2.0000

Velocity is a vector quantity, so a direction is needed. v = 2.0 m s−1 west

Worked example: Try yourself 3.3.3
FINDING ACCELERATION USING A VELOCITY–TIME GRAPH

Use the graph shown in Worked example 3.3.3 to answer the following question.

What is the acceleration of the car during the period from 4.0 to 6.0 s?

Thinking Working

Acceleration is the gradient of a v−t graph. Calculate the 
gradient using:

gradient = 
rise
run

a
v
t

= =gradient
∆
∆

 

gradient from 4.0 to 6.0 s = 
rise
run

a
v
t

=
∆
∆

a
v v
t t
f i

f i

=
−
−

 

a =
− −

−
( . ) ( . )
( . ) ( . )

4 0 0 0
6 0 4 0

 

a = −2.0000

a = −2.0 m s−1

Acceleration is a vector quantity, so a direction is needed.

Note: In this case, the car is moving in the negative 
direction and speeding up.

a = 2.0 m s−2 west

Section 3.3 Review

KEY QUESTIONS SOLUTIONS

1 D. The gradient is the displacement over the period of time taken, hence velocity.

2 The car initially moves in a positive direction and travels 8.0 m in 2.0 s. It then stops for 2.0 s. The car then reverses 
direction for 5.0 s, passing back through its starting point after 8.0 s. It travels a further 2.0 m in a negative direction 
before stopping after 9.0 s.

3 Reading from the graph:
a +8.0 m
b +8.0 m
c +4.0 m
d −2.0 m

4 The car returns to its starting point when the position is zero again, which occurs at t = 8.0 s.
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5 a The velocity during the first 2.0 s is equal to the gradient of the graph during this interval.

 
v

x x
t

f i= =
−rise

run ∆  

 
v =

−( . ) ( . )
( . )

8 0 0 0
2 0

 v = +4.0 m s−1

b After 3.0 s the velocity, v = 0.0 m s−1, since the gradient of the graph = 0.0.

c v
x x

t
f i= =
−rise

run ∆

 v =
−( . ) ( . )

( . )
0 0 8 0

4 0
 

 v = −2.0 m s−1

d The velocity at 8.0 s is −2.0 m s−1 since the car is travelling at a constant velocity of −2.0 m s−1 between ti = 4.0 s and 
tf = 9.0 s.

e The velocity from ti = 8.0 s to tf = 9.0 s = −2.0 m s−1 since the car is travelling at a constant velocity of −2.0 m s−1 
between 4.0 s and 9.0 s.

6 a  distance, d = d1 + d2 + d3

    d = (8.0) + (8.0) + (2.0) = 18.0 m
b displacement, s = ∆x1 + ∆x2 +∆x3 + ∆x4

 s = ((8.0) − (0.0)) + ((8.0) − (8.0)) + ((−2.0) − (8.0)) + ((−2.0) − (−2.0))
 s = (8.0) + (0.0) + (−10.0) + (0.0)
 s = −2.0 m

7 a average speed = gradient of the line segment

 v
x
t

=
∆
∆

 v =
−
−

( . ) ( . )
( . ) ( . )
150 0 0 0
30 0 0 0

 v = +5.00 m s−1

b average velocity = gradient of the line segment plus direction

 v
x
t

=
∆
∆

 v =
−
−

( . ) ( . )
( . ) ( . )
500 0 300 0
50 0 40 0

 v = +20.000 
 v = 20.0 m s−1 north

  The velocity is positive so the direction of the cyclist is north.
c average velocity = gradient over the whole period of time plus direction

 v
x
t

=
∆
∆

 

 
v =

−
−

( . ) ( . )
( . ) ( . )
500 0 0 0
50 0 0 0

  v = +10.000
 v = 10.0 m s−1 north

8 a acceleration at 1.0 s = gradient of section from ti = 0.0 s to tf = 2.0 s

  
a

v
t

=
∆
∆

  
a =

−
−

( . ) ( . )
( . ) ( . )
1 0 1 0
2 0 0 0  

 a = 0.0 m s−2
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b acceleration at 5.0 s = gradient of section from ti = 4.0 s to tf = 7.0 s

 
a

v
t

=
∆
∆

 
a =

−
−

( . ) ( . )
( . ) ( . )
0 0 3 0
7 0 4 0

 a = −1.0000
 a = −1.0 m s−2

 This is magnitude only, so direction is not required; however, the negative acceleration indicates the dog was 
slowing down.

c Split the area up into shapes and add the values together to get the full area under the graph.
 displacement = area under the graph

 s A A A= + +1 2 3 

 s b h b h b h= × + ×( ) + ×( )( ) ( ) ( )
1
2

1
2

 s = × + ×( ) + ×( )( . . ) ( . . ) ( . . )4 0 1 0
1
2

2 0 2 0
1
2

3 0 3 0

  s = (4.0) + (2.0) + (4.5)
 s = 10.5 m
 This is magnitude only, so direction is not required.

d average velocity, v
s
t

=
∆

 

  
v =

−
( . )

( . ) ( . )
10 5

7 0 0 0

  v = 1.5000
  v = 1.5 m s−1

9 a instantaneous velocity at 15.0 s = gradient of section from ti = 10.0 s to tf = 25.0 s

 
v

x
t

=
∆
∆

 
v =

−
−

( . ) ( . )
( . ) ( . )

500 0 200 0
25 0 10 0  

 
v =

( . )
( . )
300 0
15 0

  v = 20.000
 v = 20.0 m s−1 north
b instantaneous velocity at 35.0 s = gradient of section from ti = 30.0 s to tf = 45.0 s

 
v

x
t

=
∆
∆

  
v =

− −
−

( . ) ( . )
( . ) ( . )
100 0 500 0
45 0 30 0  

 
v =

−( . )
( . )
600 0
15 0

  v = −40.000
 v = 40.0 m s−1 south

M03_PPW_FWS11_17713_2PP.indd   12M03_PPW_FWS11_17713_2PP.indd   12 08-Aug-24   15:01:2608-Aug-24   15:01:26

DRAFT



Copyright © Pearson Australia 2025 (a division of Pearson Australia Group Pty Ltd) ISBN XXX X XXXX XXXX X

Pearson Physics 11 Western Australia

10 a Reading from the graph, the gradient of the curve is zero from t = 80.0 s, which means that there is no further 
increase in velocity.

b Draw a tangent to the graph at t = 10.0 s and determine the gradient of the tangent.
 

10

0

20

30

40

50

60

Ve
lo

ci
ty

 (m
 s–1

)

Time (s)
10 20 30 40 50 60 70 80 90 100 110 1200

 a
v
t

v v
t t
f i

f i

= =
−
−

∆
∆

 

 a =
−
−

( . ) ( . )
( . ) ( . )
40 0 3 0
18 0 0 0

 

 a =
( . )
( . )
37 0
18 0

  a = +2.0555
 a = +2.0 m s−2 (answers may vary slightly)
c Draw a tangent to the graph at t = 40.0 s and determine the gradient of the tangent.

 
a

v
t

v v
t t
f i

f i

= =
−
−

∆
∆

 
a =

−
−

( . ) ( . )
( . ) ( . )
53 0 25 0
70 0 0 0  

 a =
( . )
( . )
28 0
70 0

 

 a = +0.40000
 a = +0.40 m s−2 (answers may vary slightly)
d displacement, s = area under the graph
 Counting squares gives 49 squares, each of area 10.0 m s−1 × 10.0 s.
 Therefore each square = 1.00 × 102 m
 s = (49)(1.00 × 102) 
 s = 4.9 × 103 m
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Section 3.4 Equations for uniform acceleration

Worked example: Try yourself 3.4.1
USING THE EQUATIONS OF MOTION

A snowboarder in a race is travelling 15.5 m s−1 east as she crosses the finishing line. She then decelerates uniformly until 
coming to a stop over a distance of 30.0 m.

a Calculate her acceleration as she comes to a stop.

Thinking Working

Write down the known quantities and the quantity that 
you need to find. (The term ‘sifat’ may help you to recall 
them.) 

Apply the sign convention that east is positive and west is 
negative.

s = +30.0 m

vi = +15.5 m s−1

vf = 0.00 m s−1

a = ?

∆t = ?

Identify the correct equation to use. v v asf i
2 2 2= +  

Substitute known values into the equation and solve for a. v v asf i
2 2 2= +  

a
v v

s
f i=
−2 2

2
 

a =
− +
+

( . ) ( . )
( . )

0 00 15 5
2 30 0

2 2

 

a =
−
+

( . )
( . )
240 25
60 0

 

a = −4.0042

Use the sign convention to state the answer with its 
direction, units and the correct number of significant 
figures.

a = 4.00 m s−2 west

b How long does she take to come to a stop?

Thinking Working

Write down the known quantities and the quantity you 
need to find. (The term ‘sifat’ may help you to recall 
them.)

Apply the sign convention that east is positive and west is 
negative.

s = 30 m

vi = 15.5 m s−1

vf = 0.00 m s−1

a = −4.0042 m s−2

∆t = ?

Identify the correct equation to use. Since you now know 
four values, any equation involving ∆t will work.

v v a tf i= + ∆  

Substitute known values into the equation and solve 
for ∆t.

∆t
v v

a
f i=
−

 

∆t =
− +

−
( . ) ( . )

( . )
0 00 15 5

4 0042
 

∆t = 3.87096 s

State the answer with its units and the correct number of 
significant figures.

∆t = 3.87 s
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c What is the average velocity of the snowboarder as she comes to a stop?

Thinking Working

Write down the known quantities and the quantity that 
you need to find. (The term ‘sifat’ may help you to recall 
them.)

Apply the sign convention that east is positive and west is 
negative.

vi = +15.5 m s−1

vf = 0.00 m s−1

vav = ?

Identify the correct equation to use. v v vf iav = +( )1
2

 

Substitute known quantities into the equation and solve 
for vav.

v v vf iav = +( )1
2

 

vav = +( )1
2

0 00 15 5. .  

vav = 7.7500

Use the sign convention to state the answer with its 
direction, units and the correct number of significant 
figures.

vav = 7.75 m s−1 east

Section 3.4 Review

KEY QUESTIONS SOLUTIONS

1 E. The chosen equation must contain s, vi, vf, and a.

2 a s = 445 m, vi = 0.00 m s−1, vf = ?, a = ? , ∆t = 16.0 s

 s v t a ti= +∆ ∆
1
2

2 

 a
s v t

t
i=

−( )2
2

∆
∆

 

 a =
−( )2 445 0 00 16 0

16 0 2

( . )( . )

( . )
 

 a =
( )890

256( )
 

 a = 3.47656
 a = 3.48 m s−2; no direction is required.
b s = 445 m, vi = 0.00 m s−1, vf = ?, a = 3.47656 m s−2, ∆t = 16.0 s
  vf = vi = a∆t 
 vf = (0.00) + (3.47656)(16.0)
 vf = 55.6250 
 vf = 55.6 m s−1

c km h−1 = m s−1 × 3.60
 vf = (55.6250)(3.60) 
 vf = 200.250
 vf = 2.00 × 102 km h−1

3 a s = ?, vi = 0 m s−1, vf = 19.9 m s−1, a = ?, ∆t = 3.10 s
 vf = vi = a∆t 

 
a

v v
t

f i=
−
∆

 
a =

−( . ) ( . )
( . )

19 9 0 00
3 10

 a = 6.41935

 a = 6.42 m s−2
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b v
v vi f

av =
+
2

 vav =
+( . ) ( . )0 00 19 9
2

 

 vav = 9.9500

 vav = 9.95 m s−1

c s = ?, vi = 0.00 m s−1, vf = 19.9 m s−1, a = 6.41935 m s−2, ∆t = 3.10 s

 s v t a ti= +∆ ∆
1
2

2

 s = +( . )( . ) ( . )( . )0 00 3 10
1
2

6 41935 3 10 2

 s = 30.8450
 s = 30.8 m

4 a vi = 0.00 m s−1, vf = 167 m s−1, ∆t = 4.02 s, a = ?

 v v a tf i= + ∆  

 a
v v

t
f i=
−
∆

 

 a =
−( ) ( . )

( . )
167 0 00

4 02
 

 a = 41.5423
 a = 41.5 m s−2

b In the first phase: s = ?, vi = 0.00 m s−1, vf = 167 m s−1, a = 41.5423 m s−2, ∆t = 4.02 s

 s v t a ti= +∆ ∆
1
2

2

 s = +( . )( . ) ( . )( . )0 00 4 02
1
2

41 5423 4 02 2 

 s = 335.670 m
 s = 0.335670 km

  In the last phase: s = ?, v = 167 m s−1, ∆t = 5.40 s 

  s = v∆t 
 s = (167)(5.40) 

  s = 901.800 m

  s = 0.901800 km
 Total distance in 9.42 s is:
 s = (0.335670) + (0.901800)
 s = 1.23747 km
 s = 1.24 km
c 167 m s−1 × 3.60 = 601.200 = 601 km h−1

d vi = 0.00 m s−1, vf = 167 m s−1

 v
v vi f

av =
+
2

 vav =
+( . ) ( )0 00 167
2

 

 vav = 83.500
 vav = 83.5 m s−1

e v
s
tav = ∆
 

 vav =
×( . )

( . )
1 23747 10

9 42

3

 

 vav = 131.366
 vav =  131 m s−1
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5 a s = ?, vi = 4.12 m s−1, vf = 6.07 m s−1, a = ? m s−2, ∆t = 0.508 s

 a
v v

t
f i=
−
∆

  

 a =
−( . ) ( . )

( . )
6 07 4 12

0 508
 

 a = 3.83858
 a = 3.84 m s−2

 b s = ?, vi = 4.12 m s−1, vf = 6.07 m s−1, a = 3.83858 m s−2, ∆t = 0.508 s

   s v t a ti= +∆ ∆
1
2

2 

 s = +( . )( . ) ( . )( . )4 12 0 508
1
2

3 83858 0 508 2 

 s = 2.58826 
 s = 2.59 m

c v
v v

av
i f=
+
2

 

 vav =
+( . ) ( . )4 12 6 07
2

 

 vav =  5.09500
 vav =  5.10 m s−1

6 a s = −4.06 m, vi = −18.0 m s−1, vf = 0.00 m s−1, a = ? m s−2, ∆t = ? s

  v v asf i
2 2 2= +  

 a
v v

s
f i=
−2 2

2
 

 a =
− −
−

( . ) ( . )
( . )

0 00 18 0
2 4 06

2 2

 

 a = +39.9015
 a = 39.9 m s−2 up
b s = −4.06 m, vi = −18.0 m s−1, vf = 0.00 m s−1, a = +39.9015 m s−2, ∆t = ? s

 v v a tf i= + ∆

 
∆t

v v
a

f i=
−

 
∆t =

− −( . ) ( . )
( . )

0 00 18 0
39 9015  

 ∆t = 0.45111
 ∆t = 0.451 s
c s = −2.00 m, vi = −18.0 m s−1, vf = ? m s−1, a = +39.9015 m s−2, ∆t = ? s

 v v asf i
2 2 2= +  

 v v asf i= +2 2  

 vf = − + + −( . ) ( . )( . )18 0 2 39 9015 2 002
 

 vf = −21.9910
 vf = 22.0 m s−1 down

7 a ms
kmh−

−

=1
1

3 60.
 

  
vi =

( . )
( . )
75 0
3 60  

  vi = 20.8333
  vi = 20.8 m s−1

 b s = ?, vi = 20.8333 m s−1, ∆t = 0.254 s, 

  v
s
tav = ∆

 

 s v tav= ∆  

 s = (20.8333)(0.254)
 s =  5.29167
 s =  5.29 m forwards
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c s = ? m, vi = 20.8333 m s−1, vf = 0.00 m s−1, a = −6.70 m s−2, ∆t = ? s

 v v asf i
2 2 2= +  

 
s

v v
a

f i=
−2 2

2  

 
s =

−
−

( . ) ( . )
( . )

0 00 20 8333
2 6 70

2 2

 
 s = 32.3901
 s = 32.4 m forwards
d s = (5.29167) + (32.3901) 
 s = 37.6818 
 s = 37.7 m 

8 a s = 4.00 m, vi = 0.00 m s−1, vf = ? m s−1, a = 2.60 m s−2, ∆t = ? s 

  v v asf i
2 2 2= +  

 v v asf i= +2 2  

 vf = +( . ) ( . )( . )0 00 2 2 60 4 002
 

 vf = 4.56070
 vf = 4.56 m s−1 down the ramp
b s = 8.00 m, vi = 0.00 m s−1, vf = ? m s−1, a = 2.60 m s−2, ∆t = ? s
 v v asf i

2 2 2= +

 v v asf i= +2 2  

 vf = +( . ) ( . )( . )0 00 2 2 60 8 002
 

 vf = 6.44981
 vf = 6.45 m s−1 down the ramp
c s = 4.00 m, vi = 0.00 m s−1, vf = 4.56070 m s−1, a = 2.60 m s−2, ∆t = ? s

 a
v v

t
f i=
−
∆

 

 ∆t
v v

a
f i=
−

 

 ∆t =
−( . ) ( . )

( . )
4 56070 0 00

2 60
 

 ∆t = 1.75412
 ∆t = 1.75 s
d s = 4.00 m, vi = 4.56070 m s−1, vf = 6.44981 m s−1, a = 2.60 m s−2, ∆t = ? s

 a
v v

t
f i=
−
∆

  ∆t
v v

a
f i=
−

 

 ∆t =
−( . ) ( . )

( . )
6 44981 4 56070

2 60
 

 ∆t = 0.72658
 ∆t = 0.728 s

9 a s = ? m, vi = 0.00 m s−1, vf = 12.2 m s−1, a = 1.50 m s−2, ∆t = ? s 

  a
v v

t
f i=
−
∆

 

 ∆t
v v

a
f i=
−

 

 ∆t =
−( . ) ( . )

( . )
12 2 0 00

1 50
 

 ∆t = 8.13333
 ∆t = 8.13 s
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b The bus will catch up with Nolan when they have each travelled the same distance from the point at which Nolan 
first passes the bus.

 Nolan is at a constant velocity, so:
 s v tav= ∆
  s t= ( . )12 2 ∆  
 Bus has uniform acceleration: s = ? m, vi = 0.00 m s−1, vf = ? m s−1, a = 1.50 m s−2, ∆t = ? s

  s v t a ti= +∆ ∆
1
2

2 

 
s t t= +( . ) ( . )0 00

1
2

1 50 2∆ ∆
 

 s t= ( . )0 750 2∆  

 When the bus catches up with Nolan, their displacements are equal, so:

 ( . ) ( . )12 2 0 750 2∆ ∆t t=  

  ∆t =
( . )

( . )
12 2
0 750

 

  ∆t = 16.2667
   ∆t = 16.3 s
c s v tav= ∆  
 s = (12.2)(16.2667)
  s = 198.453 
 s = 198 m

Section 3.5 Vertical motion

Worked example: Try yourself 3.5.1
VERTICAL MOTION

A construction worker accidentally knocks a hammer from a building so that it falls vertically a distance of 60.0 m to the 
ground. Use g = −9.80 m s−2 and ignore air resistance when answering these questions.

a How long does the hammer take to fall halfway, to 30.0 m?

Thinking Working

Write down the known quantities and the quantity that 
you need to find. (The term ‘sifat’ may help you to recall 
them.)

Apply the sign convention that up is positive and down is 
negative.

s

v

v

g

t

i

f

= −

=

=

= −
=

−

−

−

30 0

0 00

9 80

1

1

2

.

.

?

.

?

m

ms

ms

ms

s∆

 

Identify the correct equation for uniform acceleration to 
use, but substitute the a for g. s v t g ti= +∆ ∆

1
2

2 

Substitute known values into the equation and solve for t.

Think about whether the value seems reasonable.
( . ) ( . ) ( . )− = + −30 0 0 00

1
2

9 80 2∆ ∆t t  

( . ) ( . )− = −30 0 4 90 2∆t  

 
∆t =

−
−

( . )
( . )

30 0
4 90

 

 ∆t = 2 47436.  

∆t = 2.47 s 
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b How long does it take the hammer to fall all the way to the ground?

Thinking Working

Write down the known quantities and the quantity that 
you need to find. (The term ‘sifat’ may help you to recall 
them.)

Apply the sign convention that up is positive and down is 
negative.

s

v

v

g

t

i

f

= −

=

=

= −
=

−

−

−

60 0

0 00

9 80

1

1

2

.

.

?

.

?

m

ms

ms

ms

s∆

 

Identify the correct equation for uniform acceleration 
to use.

s v t g ti= +∆ ∆
1
2

2 

Substitute known values into the equation and solve for t.

Think about whether the value seems reasonable.

Notice that the hammer takes 2.47 s to travel the first 
30.0 m and only 1.03 s to travel the final 30.0 m. This is 
because it is accelerating.

( . ) ( . ) ( . )− = + −60 0 0 00
1
2

9 80 2∆ ∆t t  

( . ) ( . )− = −60 0 4 90 2∆t  

 
∆t =

−
−

( . )
( . )

60 0
4 90

 

 ∆t = 3 49927.  

 ∆t = 3.50 s

c What is the velocity of the hammer as it hits the ground?

Thinking Working

Write down the known quantities and the quantity that 
you need to find. (The term ‘sifat’ may help you to recall 
them.)

Apply the sign convention that up is positive and down is 
negative.

s

v

v

g

t

i

f

= −

=

=

= −
=

−

−

−

60 0

0 00

9 80

3 49927

1

1

2

.

.

?

.

.

m

ms

ms

ms

s∆

 

Identify the correct equation to use. Since you now know 
four values, any equation involving vf will work.

v v g tf i= + ∆  

Substitute the known values into the equation and solve 
for vf.

Think about whether the value seems reasonable.

vf = + −( . ) ( . )( . )0 00 9 80 3 49927

vf = −34 2929.  

Use the sign and direction convention to describe the 
direction of the final velocity.

vf =
−34 3 1. ms  downwards  
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Worked example: Try yourself 3.5.2
MAXIMUM HEIGHT PROBLEMS

On winning a cricket match, a fielder throws a cricket ball vertically into the air at 15.0 m s−1. In the following questions, 
ignore air resistance and use g = 9.80 m s−2.

a Determine the maximum height reached by the ball.

Thinking Working

Write down the known quantities and the quantity that 
you need to find. (The term ‘sifat’ may help you to recall 
them.)

At the maximum height the velocity is zero.

Apply the sign convention that up is positive and down is 
negative.

s

v

v

g

t

i

f

=

= +

=

= −
=

−

−

−

?

.

.

.

?

m

ms

ms

ms

15 5

0 00

9 80

1

1

2

∆

 

Identify the correct equation to use, but substitute the a 
for g.

v v g tf i= + ∆  

Substitute known values into the equation and solve for s.
s

v v
g

f i=
−2 2

2
 

s =
− +
−

( . ) ( . )
( . )

0 00 15 5
2 9 80

2 2

 

s = +12.2577

s = +12.3 m

i.e. the ball reaches a height of 12.3 m above the fielder’s 
hand.

b Calculate the time that the ball takes to return to its starting position.

Thinking Working

To work out the time the ball is in the air, first calculate 
the time it takes to reach its maximum height.

Write down the known quantities and the quantity that 
you need to find.

s

v

v

g

t

i

f

=

= +

=

= −
=

−

−

−

?

.

.

.

?

m

ms

ms

ms

s

15 5

0 00

9 80

1

1

2

∆

 

Identify the correct equation to use. v v g tf i= + ∆  

Substitute known values into the equation and solve  
for ∆t.

∆t
v v

g
f i=
−

 

∆t =
− +

−
( . ) ( . )

( . )
0 00 15 5

9 80
 

Δt = 1.58163 to maximum height

Δt = 1.58163 to return to the fielder

total Δt = 3.16327

total Δt = 3.16 s

Section 3.5 Review

KEY QUESTIONS SOLUTIONS

1 The upwards velocity will decrease by −9.80 m s−1 for every second that passes until the ball reaches its highest point. 
At this point in time the velocity is zero, after which the velocity will increase by −9.80 m s−1 for every second of its 
downwards motion until the instant before it hits the hand.

2 B. The acceleration of a falling object is due to gravity, so it is constant.
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3 A and D. Acceleration due to gravity is constant in the downwards direction; however, Yvette’s velocity changes 
throughout the journey and is zero at the top of the flight.

4 a s = ? m, vi = 0.00 m s−1, vf = ? m s−1, g = −9.80 m s−2, ∆t = 3.04 s  

  vf = vi = a∆t

 vf = + −( . ) ( . )( . )0 00 9 80 3 04  
 vf = −29 7920.  

  vf = 29.8 m s−1 downwards
b s = −30.0 m, vi = 0.00 m s−1, vf = ? m s−1, g = −9.80 m s−2, ∆t = ? s   

 v v asf i
2 2 2= +  

 vf = + − −( . ) ( . )( . )0 00 2 9 80 30 02  

 vf = −24 2487.  

  vf = 24.2 m s−1 downwards
c vi = 0.00 m s−1, vf = −24.2487 m s−1 

 v
v v

av
i f=
+
2

 

 vav =
+ −( . ) ( . )0 00 24 2487

2
 

 vav = −12 1244.  

  vav = 12.1 m s−1 downwards

5 a The acceleration of the marble on the way up is the same as its acceleration on the way down. The acceleration of a 
falling object is due to gravity and it is constant, no matter the direction of vertical travel (upwards or downwards).

b The magnitude of the launch velocity of the marble is the same as the magnitude of its landing velocity. The flight 
is symmetrical, so the magnitudes of the starting and landing velocities are the same, but in opposite directions. 
This only applies if the marble returns to the same vertical position from which it left.

6 a s = ? m, vi = ? m s−1, vf = 0.00 m s−1, g = −9.80 m s−2, ∆t = −1.58 s   

  vf = vi = a∆t

  vi = vf = a∆t

 vi = − −( . ) ( . )( . )0 00 9 80 1 58  
 vi = +15 4840.  

  vi = 15.5 m s−1 upwards 
b s = ? m, vi + 15.4840 m s−1, vf = 0.00 m s−1, g = −9.80 m s−2, ∆t = −1.58 s  

 v v gsf i
2 2 2= +  

 s
v v

g
f i=
−2 2

2
 

  s =
−
−

( . ) ( . )
( . )

0 00 15 4840
2 9 80

2 2

 

  s = +12 2324.  

  s = 12.2 m upwards

7 a s = ? m, vi − 0.00 m s−1, vf = ? m s−1, g = −9.80 m s−2, ∆t = −0.400 s 

  vf = vi = g∆t

 vf = + −( . ) ( . )( . )0 00 9 80 0 400  
 vf = −3 92000.  

  vf = 3.92 m downwards
b s = ? m, vi = −3.92000 m s−1, vf = 0.00 m s−1, g = −9.80 m s−2, ∆t = −0.400 s
 s v t g ti= +∆ ∆

1
2

2 

 s = + −( . )( . ) ( . )( . )0 00 0 400
1
2

9 80 0 400 2 

 s = −0 78400.  

  s = 0.784 m downwards
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c s = ? m, vi = −0.00 m s−1, vf = ? m s−1, g = −9.80 m s−2, ∆t = −0.200 s
 s v t g ti= +∆ ∆

1
2

2
 

 s = + −( . )( . ) ( . )( . )0 00 0 200
1
2

9 80 0 200 2
 

 s = −0 19600.  

  s = 0.196 m downwards 
d displacement from ti = 0.200 s to tf = 0.400 s 
 s s s= −0 400 0 200. .  
 s = − − −( . ) ( . )0 78400 0 19600  
 s = −0 58800.  

  s = 0.588 m downwards

8 a The time to the top is half of the total time, i.e. 2.04 s.
b s = ? m, vi = ? m s−1, vf = 0.00 m s−1, g = −9.80 m s−2, ∆t = −2.04 s 

 v v g tf i= + ∆  

 v v g ti f= − ∆  

 vi = − −( . ) ( . )( . )0 00 9 80 2 04  

 vi = +19 9920.  
  vf = 20.0 m s−1 upwards

c s = ? m, vi = 0.00 m s−1, vf = +19.9920 m s−1, g = −9.80 m s−2, ∆t = 2.04 s 

 s v t g ti= +∆ ∆
1
2

2
 

 s = + + −( . )( . ) ( . )( . )19 9920 2 04
1
2

9 80 2 04 2
 

 s = +20 3918.  
  s = 20.4 m upwards

d The lid returns to its starting position, so the final velocity will be the same as the launch velocity, but in the 
opposite direction, i.e. 

 vf = −19 9920.  
 vf = 20.0 m s−1 downwards

9 a Shot-put: s = −60.0 m, vi = 0.00 m s−1, vf = ? m s−1, g = −9.80 m s−2, ∆t = ? s   

  Note that mass is not a factor in this problem.

 s v t g ti= +∆ ∆
1
2

2
 

 ( . ) ( . ) ( . )− = + −60 0 0 00
1
2

9 80 2∆ ∆t t  

 ∆t =
−
−

( . )
( . )

60 0
4 90

 

 ∆t = 3 49927.  

 ∆t = 3.50 s
b 100 g mass: s = −70.0 m, vi = ? m s−1, vf = −10.0 m s−1, g = −9.80 m s−2, ∆t = ? s 
 Note that mass is not a factor in this problem.

 v v gsf i
2 2 2= +  

 vf
2 210 0 2 9 80 70 0= − + − −( . ) ( . )( . ) 

 vf = ± 1472 00.  
 vf = −38 3667.  
 Because the mass has a downwards final velocity, we choose the negative value for its direction.

 v v g tf i= + ∆

 ∆t
v v

g
f i=
−

 

 
∆t =

− − −
−

( . ) ( . )
( . )

38 3667 10 0
9 80  

 ∆t = 2 89456.  
 ∆t = 2.89 s

 You can also solve this using the formula s v t g ti= +∆ ∆
1
2

2 and the quadratic formula.
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10 a s = +15.0 m, vi = ? m s−1, vf = 0.00 m s−1, g = −9.80 m s−2, ∆t = ? s 

  s v t g tf= −∆ ∆
1
2

2 

  ( . ) ( . ) ( . )+ = − −15 0 0 00
1
2

9 80 2∆ ∆t t  

  ∆t =
+

− −
( . )
( . )

15 0
4 90

 

  .∆t =1 74964.  

    ∆t = 1.75 s
b The displacement of the ball must be −11.0 m below its maximum height of 15.0 m. You need to find how long it 

takes to travel to this displacement on its way down.

 s = −11.0 m, vi = 0.00 m s−1, vf = ? m s−1, g = −9.80 m s−2, ∆t = ? s  

  s v t a ti= +∆ ∆
1
2

2 

 ( . ) ( . ) ( . )− = + −11 0 0 00
1
2

9 80 2∆ ∆t t  

  ∆t =
−
−

( . )
( . )

11 0
4 90

 

  ∆t =1 49830.

  ∆t t ttotal up down= +  

  ∆ttotal = +( . ) ( . )1 74964 1 49830  

  ∆ttotal = 3 24793.

  ∆ttotal  s= 3 25.  

11 a s = ? m, vi = +8.00 m s−1, vf = 0.00 m s−1, g = −9.80 m s−2, ∆t = ? s  
  

v v gsf i
2 2 2= +

  s
v v

g
f i=
−2 2

2

  s =
− +
−

( . ) ( . )
( . )

0 00 8 00
2 9 80

2 2

 

  s = +3 26531.  m m
  s s stotal hand throw= +

  stotal = + + +( . ) ( . )1 90 3 26531  

  stotal = +5 16531.

  stotal m upwards= 5 17.

b s v v g ti f= + = + = = − =− − −3 26531 8 00 0 00 9 801 1 2. . , . , . , ?m, ms  ms  ms  s∆

  v v g tf i= + ∆

 ∆t
v v

g
f i=
−

 
∆t =

− +
−

( . ) ( . )
( . )

0 00 8 00
9 80

 ∆t = 0 81633.

 ∆t = 0 816. s

c s v v g ti f= = + = = − =− − −? . , ? , . , .m, ms  ms  ms  s8 00 9 80 3 001 1 2 ∆

  s = + + −( . )( . ) ( . )( . )8 00 3 00
1
2

9 80 3 00 2

 shand-sea = −20 1000.  
  s s scliff-sea hand-sea hand-cliff= −  

  scliff-sea = − − −( . ) ( . )20 1000 1 90  

  scliff-sea = −18 2000.  

  ssea-cliff = +18 200.  
 The height of cliff is 18.2 m above the sea.
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CHAPTER 3 REVIEW

1 ms
kmh−

−

=1
1

3 60.
 

 
v = =

( . )
( . )

.
95 0
3 60

26 3888 

v = −26 4 1. ms  

2 kmh ms− −= ×1 1 3 60.
 v = =( . )( . ) .15 3 3 60 55 0800

 v = −55 1 1. kmh

3 v
d
tav = ∆
 

vav =
+ +( . ) ( . ) ( . )
( . )

15 4 5 7 10 5
3 00

 

vav =10 53333.  
vav kmh= −10 5 1.  

4 a v
s
tav = ∆
 

 
vav =

( . )
( . )
20 2
3 00

 

  vav = 6 73333.  

  vav kmh  north= −6 73 1.  

b ms
kmh−

−

=1
1

3 60.

 
v = =

( . )
( . )

.
6 73333

3 60
1 87037 

 v = −1 87 1. ms  north 

5 ∆v v vf i= −  

∆v = −( . ) ( . )4 50 6 00
∆v = − −1 50 1. ms

 The change in speed is −1.50 m s−1. That is, it has decreased by 1.50 m s−1. Speed is a scalar quantity and has 
no direction.

6 B. The car is moving in a positive direction, so its velocity is positive. The car is slowing down so its acceleration 
is negative.

7 s = ? m, vi = 15.6 m s−1, vf = 0.00 m s−1, g = ? m s−2, ∆t = 2.55 s  

a
v v

t
f i=
−
∆

 

a =
−( . ) ( . )

( . )
0 00 15 6

2 55
 

a = −6 11765.  
a = − −6 12 2. ms  

8 a The only positive gradient section is from ti = 10.0 to tf = 25.0 s.
b The only negative gradient section is from ti = 30.0 to tf = 45 s.
c The motorbike is stationary when the sections on the position–time graph are horizontal. The horizontal sections 

are from ti = 0.00 to tf = 10.0 s, from ti = 25.0 to tf = 30.0 s, and from ti = 45.0 to tf = 60.0 s.
d The zero position is at t = 42.5 s.

9 a Graph B is the correct answer as it shows speed decreasing to zero to show the car stopping.
b Graph A is the correct graph because it shows a constant value for speed. This is indicated by a straight horizontal 

line on a velocity–time graph.
c Graph C is the correct graph because it shows velocity increasing from zero in a straight line, indicating uniform 

acceleration.
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10 a Displacement is the area under a velocity–time graph. Area can be estimated by counting squares under the graph, 
then multiplying by the area of each square. This gives approximately:
s = × ×−57 2 0 1 01 squares ms s( . . )

s =114 000.

s = ×1 1 102. m north

 Note: Estimations should be expressed to either one or two significant figures.

b v
s
t

=
∆

 

v =
( . )

( . )
114 000

11 3
 

v =10 0885.  
v = × −1 0 101 1. ms  north 

c Acceleration is the gradient of the graph. At t = 1.0 s, the gradient is flat and therefore zero.
d Acceleration at t = 10.0 s is:

a
v v
t t
f i

f i

= = =
−
−

gradient
rise
run

 

a =
−
−

( . ) ( . )
( . ) ( . )
0 0 14 0
11 3 9 3

 

a = −7 0000.  
a = −7 0 2. ms  south 

e A. The velocity is always positive (or zero), indicating that the cyclist only travelled in the positive direction or was 
stationary.

11 s v v a ti f= = = = − =− − −? . , ? , . , . m, ms   ms  ms  s0 00 3 59 4 511 1 2 ∆  

 v v a tf i= + ∆  
vf = + −( . ) ( . )( . )0 00 3 59 4 51  
vf = −16 1909.  
vf =

−16 2 1. ms  west 

12 a s v v a ti f= + = = = =− − −2 80 0 00 1 001 1 2. . , ? , ? , .m, ms   ms   ms  s∆  

   
s v t a ti= +∆ ∆

1
2

2 

  
( . ) ( . )( . ) ( . )+ = +2 80 0 00 1 00

1
2

1 00 2a  

   a = +2 2 80( . ) 
   a = +5 6000.  
    a = −5 60 2. ms  east 

b s v v a ti f= + = = = + =− − −2 80 0 00 5 6000 1 001 1 2. . , ? , . , .m, ms  ms  ms  s∆  

 vf = + +( . ) ( . )( . )0 00 5 6000 1 00

 vf = +5 6000.  

 vf =
−5 60 1. ms  east 

c s m v v a ti f= = + = = + =− − −? . , ? , . , ., ms  ms  ms  s5 6000 5 6000 1 001 1 2 ∆  

 
s v t a ti= +∆ ∆

1
2

2

 

 
s = + +( . )( . ) ( . )( . )5 6000 1 00

1
2

5 6000 1 00 2

 
 s = 8 4000.  
 s = 8 40.  m east 

13 a s v v a ti f= − = − = = =− − −10 6 10 3 0 001 1 2. . , . , ? , ?m, ms  ms  ms  s∆  
 v v asf i

2 2 2= +  

 a
v v

s
f i=
−2 2

2
 

 a =
− −
−

( . ) ( . )
( . )

0 00 10 3
2 10 6

2 2

 

 a = +5 00425.  
 a = −5 00 2. ms  north 
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b s v v a ti f= − = − = = =− − −10 6 10 3 0 00 5 004251 1 2. . , . , . , ?m, ms  ms  ms  s∆  
 v v a tf i= + ∆  

 
∆t

v v
a

f i=
−  

 
∆t =

− −( . ) ( . )
( . )

0 00 10 6
5 00425

 

 ∆t = 3 19729.  
 ∆t = 3 20. s 

14 a She starts at xi = 4.0 m.
b She is at rest during section A and C.
c She is moving in a positive direction during section B with a velocity of 0.80 m s−1. In the 10.0 second time interval, 

her position changed by +8.0 m. This means a +0.80 metre increase in position per second or 0.80 m s−1.
d She is moving in the negative direction during section D and is travelling at 2.4 m s−1.
e d v t= + = =−( . . ) ? , .8 0 12 0 25 01m, ms  s∆  

  
v

d
t

=
∆

 

  
v =

( . )
( . )
20 0
25 0

 

  v = 0 80000.

  v = 0.80 m s−1

15 a a
v
t

v v
t t
f i

f i

= = =
−
−

gradient
∆
∆

 

  
a =

−
−

( . ) ( . )
( . ) ( . )
8 0 0 0
4 0 0 0

 

  a = 2 0000.  
  a = 2.0 m s−2

b The bus will overtake the bike when they have both achieved the same displacement, given by the areas under the 
two graphs. The bike gains a displacement advantage of two squares while the bus is accelerating. The bus makes 
up for that two-square advantage by gaining back one square between t = 4.0 and t = 8.0 seconds, then another 
square between t = 8.0 and t = 10.0 seconds. After 10.0 s, the bus and the bike have the same number of squares 
and so they have the same displacement from the origin.

c s b h= = ×area ( ) 

s = ( . )( . )10 0 8 0  
s = 80 0000.  
s = ×8 0 101. m 

d Determine the total displacement by dividing the area under the graph into rectangles and triangles.

s b h b h b h= × + × + ×
1
2

1
2

( ) ( ) ( ) 

s = × + × + ×
1
2

4 0 8 0 4 0 8 0
1
2

4 0 4 0( . . ) ( . . ) ( . . ) 

s = 56 0000. m 

v
s
t

=
∆

 

v =
( . )

( . )
56 0000

8 0
 

v = 7 0000.  
v = −7 0 1. ms  
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16 a

Ac
ce

le
ra

tio
n 

(m
 s–2

) 

1

0

2

Time (s)
2 4 6 8 10 12 14 16 18 200

b The change in velocity of the bus over the first 8.0 s is determined by calculating the area under the acceleration–
time graph from t = 0.0 to t = 8.0 s.
∆v b h b h= × + ×( ) ( ) 
∆v = × + ×( . . ) ( . . )4 0 2 0 4 0 1 0  
∆v =12 0000.  
∆v = −12 1ms

17 The marble has a positive initial velocity that changes to a final velocity of zero at the highest point. It slows down by 
−9.80 m s−1 each second, so it will take 4.00 s to reach 0.00 m s−1 at the instant in time it reaches the top of its journey. 
Its acceleration is constant at −9.80 m s−2 due to gravity.

18 D. The acceleration of a falling object is due to gravity, so it is constant.

19 B. Initial velocity is upwards, zero at the highest point and downwards on the way back down. Acceleration due to 
gravity is constant, never zero and is always downwards.

20 a The area under the v−t graph up to 3.0 s gives:

  
s b h= ×

1
2

( ) 

  
s =

1
2

3 0 30 0( . )( . ) 

  s = 45 0000.  
  s = 45 m

  or

  
s

v v
ti f=

+( )
2

∆  

  
s =

+( )30 0 0 0

2
3 0

. .
( . ) 

  s = 45 0000.  

  s = 45 m

 b From the graph, the ball goes up for 3.0 s, then down for 3.0 s, giving a total period of time,  
∆t = 6.0 s or:

  s v v g ti f= = + = − = − =− − −? . , . , . , .m, ms  ms  ms  s30 0 30 0 10 0 6 01 1 2 ∆  

  v v g tf i= + ∆  

  
∆t

v v
g

f i=
−  

  
∆t =

− − +
−

( . ) ( . )
( . )

30 0 30 0
10 0

 

  ∆t = 6 0000.  
  ∆t = 6 0. s 
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 c From the v−t graph, the velocity at t = 5.0 s is −20.0 or 20.0 m s−1 down 
 or:

  s v v g ti f= = + = = − =− − −? . , ? , . , .m, ms  ms  ms  s30 0 10 0 5 01 1 2 ∆  
  v v g tf i= + ∆  

  vf = + + −( . ) ( . )( . )30 0 10 0 5 0  
  vf = −20 0000.  
  vf =

−20 0 1. ms  down 
 d Acceleration is always −10.0 m s−2 or 10.0 m s−2 down.

21 a Balloon: d v t= = − =−80 0 8 00 1. . , ?m, ms  s∆  

 
v

d
t

=
∆

 
v =

( . )
( . )
80 0
8 00

 

 v =10 0000.  
 v =10 0. s

b Coin: s v v g ti f= − = − = = − =− − −80 0 8 00 9 801 1 2. . , ? , . , ?m, ms  ms  ms  s∆  

 v v gsf i
2 2 2= +  

 vf = ± − + − −( . ) ( . )( . )8 00 2 9 80 80 02
 

 vf = −38 7814.  

 vf =
−38 8 1. ms  down 

c Coin: s v v g ti f= − = − = − = − =− − −80 0 8 00 38 7814 9 801 1 2. . , . , . , ?m, ms  ms  ms  ∆ ss 

 v v g tf i= + ∆  

 
∆t

v v
g

f i=
−

 

 
∆t =

− − −
−

( . ) ( . )
( . )

38 7814 8 00
9 80

 

 ∆t = 3 14096.  

 ∆t = 3 14. s 

 Difference in time balloon coin∆t t t= −  
  ∆t = −( . ) ( . )10 0000 3 14096  
  ∆t = 6 85904.  
  ∆t = 6 86. s 

22 s v v g ti f= = = = − =− − −? ? , . , . , .m, ms  ms  ms  s1 1 20 00 9 80 1 50∆  

 v v g tf i= + ∆  

 v v g ti f= − ∆  

 vi = − −( . ) ( . )( . )0 00 9 80 1 50  

 vf = +14 7000.  

 vf =
−14 7 1. ms  up 

23 s v v g ti f= = + = = − =− − −? . , . , . , .m, ms  ms  ms  s14 7000 0 00 9 80 1 501 1 2 ∆  

 v v gsf i
2 2 2= +  

  s
v v

g
f i=
−2 2

2
 

  s =
− +
−

( . ) ( . )
( . )

0 00 14 7000
2 9 80

2 2

 

  s = +11 0250.  

 s =11 0. m up 
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