ENGINEERING MECHANICS

DYNAMICS

FOURTEENTH EDITION IN SI UNITS

R. C. HIBBELER

SI Conversion by Kai Beng Yap

PEARSON

Hoboken Boston Columbus San Francisco New York Indianapolis London Toronto Sydney Singapore Tokyo Montreal Dubai Madrid Hong Kong Mexico City Munich Paris Amsterdam Cape Town

CONTENTS

12	
Kinemat	ics of a
Particle	3

- Chapter Objectives 3
- 12.1 Introduction 3
- 12.2 Rectilinear Kinematics: Continuous Motion 5
- **12.3** Rectilinear Kinematics: Erratic Motion 20
- 12.4 General Curvilinear Motion 34
- **12.5** Curvilinear Motion: Rectangular Components 36
- **12.6** Motion of a Projectile 41
- 12.7 Curvilinear Motion: Normal and Tangential Components 56
- 12.8 Curvilinear Motion: Cylindrical Components 71
- 12.9 Absolute Dependent Motion Analysis of Two Particles 85
- 12.10 Relative-Motion of Two Particles Using Translating Axes 91

13 Kinetics of a Particle: Force and Acceleration 113

- Chapter Objectives 113
- 13.1 Newton's Second Law of Motion 113
- **13.2** The Equation of Motion 116
- **13.3** Equation of Motion for a System of Particles 118
- **13.4** Equations of Motion: Rectangular Coordinates 120
- **13.5** Equations of Motion: Normal and Tangential Coordinates 138
- **13.6** Equations of Motion: Cylindrical Coordinates 152
- *13.7 Central-Force Motion and Space Mechanics 164

14 Kinetics of a Particle: Work and Energy 179

Chapter Objectives 179

- **14.1** The Work of a Force 179
- 14.2 Principle of Work and Energy 184
- **14.3** Principle of Work and Energy for a System of Particles 186
- 14.4 Power and Efficiency 204
- **14.5** Conservative Forces and Potential Energy 213
- **14.6** Conservation of Energy 217

15

Kinetics of a Particle: Impulse and Momentum 237

Chapter Objectives 237

- **15.1** Principle of Linear Impulse and Momentum 237
- **15.2** Principle of Linear Impulse and Momentum for a System of Particles 240
- **15.3** Conservation of Linear Momentum for a System of Particles 254
- **15.4** Impact 266
- 15.5 Angular Momentum 280
- **15.6** Relation Between Moment of a Force and Angular Momentum 281
- **15.7** Principle of Angular Impulse and Momentum 284
- 15.8 Steady Flow of a Fluid Stream 295
- ***15.9** Propulsion with Variable Mass 300

16 Planar Kinematics of a Rigid Body 319

Chapter Objectives 319

- **16.1** Planar Rigid-Body Motion 319
- **16.2** Translation 321
- **16.3** Rotation about a Fixed Axis 322
- **16.4** Absolute Motion Analysis 338
- 16.5 Relative-Motion Analysis: Velocity 346
- **16.6** Instantaneous Center of Zero Velocity 360
- **16.7** Relative-Motion Analysis: Acceleration 373
- **16.8** Relative-Motion Analysis Using Rotating Axes 389

17 Planar Kinetics of a Rigid Body: Force and Acceleration 409

Chapter Objectives 409

- **17.1** Mass Moment of Inertia 409
- **17.2** Planar Kinetic Equations of Motion 423
- **17.3** Equations of Motion: Translation 426
- 17.4 Equations of Motion: Rotation about a Fixed Axis 441
- **17.5** Equations of Motion: General Plane Motion 456

18 Planar Kinetics of a Rigid Body: Work and Energy 473

Chapter Objectives 473

18.1 Kinetic Energy 473

18.2 The Work of a Force 476

18.3 The Work of a Couple Moment 478

18.4 Principle of Work and Energy 480

18.5 Conservation of Energy 496

19 Planar Kinetics of a Rigid Body: Impulse and Momentum 517

Chapter Objectives 517
19.1 Linear and Angular Momentum 517
19.2 Principle of Impulse and Momentum 523
19.3 Conservation of Momentum 540
*19.4 Eccentric Impact 544

20 Three-Dimensional Kinematics of a Rigid Body 561

Chapter Objectives 561

- 20.1 Rotation about a Fixed Point 561
- *20.2 The Time Derivative of a Vector Measured from Either a Fixed or Translating-Rotating System 564
- 20.3 General Motion 569
- *20.4 Relative-Motion Analysis Using Translating and Rotating Axes 578

21 Three-Dimensional Kinetics of a Rigid Body 591

Chapter Objectives 591

- *21.1 Moments and Products of Inertia 591
- 21.2 Angular Momentum 601
- 21.3 Kinetic Energy 604
- *21.4 Equations of Motion 612
- ***21.5** Gyroscopic Motion 626
- **21.6** Torque-Free Motion 632

22 Vibrations 643

Chapter Objectives 643

- ***22.1** Undamped Free Vibration 643
- *22.2 Energy Methods 657
- *22.3 Undamped Forced Vibration 663
- *22.4 Viscous Damped Free Vibration 667
- *22.5 Viscous Damped Forced Vibration 670
- ***22.6** Electrical Circuit Analogs 673

Appendix

- A. Mathematical Expressions 682
- B. Vector Analysis 684
- C. The Chain Rule 689

Fundamental Problems Partial Solutions and Answers 692

Preliminary Problems

Dynamics Solutions 713

Review Problem Solutions 723

Answers to Selected Problems 733

Index 747