
1Introduction to Computers,
the Internet and Visual C#

O b j e c t i v e s
In this chapter you’ll:

■ Learn basic computer
hardware, software and data
concepts.

■ Be introduced to the different
types of computer
programming languages.

■ Understand the history of the
Visual C# programming
language and the Windows
operating system.

■ Learn what cloud computing
with Microsoft Azure is.

■ Understand the basics of
object technology.

■ Be introduced to the history
of the Internet and the World
Wide Web.

■ Understand the parts that
Windows, .NET, Visual
Studio and C# play in the C#
ecosystem.

■ Test-drive a Visual C#
drawing app.

M01_DEIT1540_06_SE_C01.fm Page 41 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

42 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.1 Introduction
Welcome to C#1—a powerful computer-programming language that’s easy for novices to
learn and that professionals use to build substantial computer applications. Using this book,
you’ll write instructions commanding computers to perform powerful tasks. Software (i.e.,
the instructions you write) controls hardware (i.e., computers and related devices).

There are billions of personal computers in use and an even larger number of mobile
devices with computers at their core. Since it was released in 2001, C# has been used pri-
marily to build applications for personal computers and systems that support them. The
explosive growth of mobile phones, tablets and other devices also is creating significant
opportunities for programming mobile apps. With this new sixth edition of Visual C#
How to Program, you’ll be able to use Microsoft’s new Universal Windows Platform
(UWP) with Windows 10 to build C# apps for both personal computers and Windows
10 Mobile devices. With Microsoft’s purchase of Xamarin, you also can develop C#
mobile apps for Android devices and for iOS devices, such as iPhones and iPads.

1.2 Computers and the Internet in Industry and Research
These are exciting times in the computer field! Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-
lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, eBay and many more. These companies are major employers of people who study
computer science, computer engineering, information systems or related disciplines. At
the time of this writing, Google’s parent company, Alphabet, and Apple were the two most

1.1 Introduction
1.2 Computers and the Internet in

Industry and Research
1.3 Hardware and Software

1.3.1 Moore’s Law
1.3.2 Computer Organization

1.4 Data Hierarchy
1.5 Machine Languages, Assembly

Languages and High-Level Languages
1.6 Object Technology
1.7 Internet and World Wide Web
1.8 C#

1.8.1 Object-Oriented Programming
1.8.2 Event-Driven Programming
1.8.3 Visual Programming
1.8.4 Generic and Functional Programming

1.8.5 An International Standard
1.8.6 C# on Non-Windows Platforms
1.8.7 Internet and Web Programming
1.8.8 Asynchronous Programming with

async and await
1.8.9 Other Key Programming Languages

1.9 Microsoft’s .NET
1.9.1 .NET Framework
1.9.2 Common Language Runtime
1.9.3 Platform Independence
1.9.4 Language Interoperability

1.10 Microsoft’s Windows® Operating
System

1.11 Visual Studio Integrated
Development Environment

1.12 Painter Test-Drive in Visual Studio
Community

Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Making-a-Difference Exercises |
Making-a-Difference Resources

1. The name C#, pronounced “C-sharp,” is based on the musical # notation for “sharp” notes.

M01_DEIT1540_06_SE_C01.fm Page 42 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.2 Computers and the Internet in Industry and Research 43

valuable companies in the world. Figure 1.1 provides a few examples of the ways in which
computers are improving people’s lives in research, industry and society.

Name Description

Electronic
health records

These might include a patient's medical history, prescriptions, immunizations, lab
results, allergies, insurance information and more. Making these available to health-
care providers across a secure network improves patient care, reduces the probability
of error and increases the health-care system’s overall efficiency, helping control costs.

Human
Genome
Project

The Human Genome Project was founded to identify and analyze the 20,000+
genes in human DNA. The project used computer programs to analyze complex
genetic data, determine the sequences of the billions of chemical base pairs that
make up human DNA and store the information in databases, which have been
made available over the Internet to researchers in many fields.

AMBER™
Alert

The AMBER (America’s Missing: Broadcast Emergency Response) Alert System
helps find abducted children. Law enforcement notifies TV and radio broadcasters
and state transportation officials, who then broadcast alerts on TV, radio, comput-
erized highway signs, the Internet and wireless devices. AMBER Alert partners
with Facebook, whose users can “Like” AMBER Alert pages by location to receive
alerts in their news feeds.

World
Community
Grid

People worldwide can donate their unused computer processing power by install-
ing a free secure software program that allows the World Community Grid
(http://www.worldcommunitygrid.org) to harness unused capacity. This comput-
ing power, accessed over the Internet, is used in place of expensive supercomputers
to conduct scientific research projects that are making a difference—providing
clean water to third-world countries, fighting cancer, growing more nutritious rice
for regions fighting hunger and more.

Cloud
computing

Cloud computing allows you to use software, hardware and information stored in
the “cloud”—i.e., accessed on remote computers via the Internet and available on
demand—popular examples are Dropbox, Google Drive and Microsoft OneDrive.
You can increase or decrease resources incrementally to meet your needs at any given
time, so cloud services can be more cost effective than purchasing expensive hard-
ware to ensure that you have enough storage and processing power to meet peak-
level needs. Using cloud-computing services shifts the burden of managing these
applications from the business to the service provider, saving businesses time, effort
and money. In an online chapter, you’ll use Microsoft Azure—a cloud-computing
platform that allows you to develop, manage and distribute your apps in the cloud.
With Microsoft Azure, your apps can store their data in the cloud so that it’s available
at all times from any of your desktop computers and mobile devices. For information
on Microsoft Azure’s free and paid services visit https://azure.microsoft.com.

Medical
imaging

X-ray computed tomography (CT) scans, also called CAT (computerized axial
tomography) scans, take X-rays of the body from hundreds of different angles.
Computers are used to adjust the intensity of the X-rays, optimizing the scan for
each type of tissue, then to combine all of the information to create a 3D image.
MRI scanners use a technique called magnetic resonance imaging to produce
internal images noninvasively.

Fig. 1.1 | Improving people’s lives with computers. (Part 1 of 2.)

M01_DEIT1540_06_SE_C01.fm Page 43 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

44 Chapter 1 Introduction to Computers, the Internet and Visual C#

GPS Global Positioning System (GPS) devices use a network of satellites to retrieve loca-
tion-based information. Multiple satellites send time-stamped signals to the GPS
device, which calculates the distance to each satellite, based on the time the signal
left the satellite and the time the signal arrived. This information helps determine
the device’s exact location. GPS devices can provide step-by-step directions and help
you locate nearby businesses (restaurants, gas stations, etc.) and points of interest.
GPS is used in numerous location-based Internet services such as check-in apps to
help you find your friends (e.g., Foursquare and Facebook), exercise apps such as
Map My Ride+, Couch to 5K and RunKeeper that track the time, distance and
average speed of your outdoor ride or jog, dating apps that help you find a match
nearby and apps that dynamically update changing traffic conditions.

Robots Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba vacuuming robot),
entertainment (e.g., robotic pets), military combat, deep sea and space exploration
(e.g., NASA’s Mars rover Curiosity) and more. Researchers, such as those at Robo-
How (http://robohow.eu), are working to create autonomous robots that perform
complex human manipulation tasks (such as cooking) and that can learn addi-
tional tasks both from the robots’ own experiences and from observing humans
performing other tasks.

E-mail,
Instant
Messaging
and
Video Chat

Internet-based servers support all of your online messaging. E-mail messages go
through a mail server that also stores the messages. Instant Messaging (IM) and
Video Chat apps, such as Facebook Messenger, WhatsApp, AIM, Skype, Yahoo!
Messenger, Google Hangouts, Trillian and others, allow you to communicate with
others in real time by sending your messages and live video through servers.

E-commerce This technology has exploded with companies like Amazon, eBay, Alibaba, Walmart
and many others, causing a major shift away from brick-and-mortar retailers.

Internet TV Internet TV set-top boxes (such as Apple TV, Android TV, Roku, Chromecast and
TiVo) allow you to access an enormous amount of content on demand, such as
games, news, movies, television shows and more, and they help ensure that the
content is streamed to your TV smoothly.

Streaming
music services

Streaming music services (such as Apple Music, Pandora, Spotify and more) allow
you to listen to large catalogues of music over the web, create customized “radio
stations” and discover new music based on your feedback.

Self-driving
cars and
smart homes

These are two enormous markets. Self-driving cars are under development by
many technology companies and car manufacturers—they already have an impres-
sive safety record and soon could be widely used saving lives and reducing injuries.
Smart homes use computers for security, climate control, minimizing energy costs,
automated lighting systems, fire detection, window control and more.

Game
programming

Global video-game revenues are expected to reach $107 billion by 2017 (http://
www.polygon.com/2015/4/22/8471789/worldwide-video-games-market-value-

2015). The most sophisticated games can cost over $100 million to develop, with
the most expensive costing half a billion dollars (http://www.gamespot.com/
gallery/20-of-the-most-expensive-games-ever-made/2900-104/). Bethesda’s
Fallout 4 earned $750 million in its first day of sales (http://fortune.com/2015/
11/16/fallout4-is-quiet-best-seller/)!

Name Description

Fig. 1.1 | Improving people’s lives with computers. (Part 2 of 2.)

M01_DEIT1540_06_SE_C01.fm Page 44 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.3 Hardware and Software 45

1.3 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster than
human beings can. Many of today’s personal computers can perform billions of calcula-
tions in one second—more than a human can perform in a lifetime. Supercomputers are
already performing thousands of trillions (quadrillions) of instructions per second! China’s
National University of Defense Technology’s Tianhe-2 supercomputer can perform over
33 quadrillion calculations per second (33.86 petaflops)!2 To put that in perspective, the
Tianhe-2 supercomputer can perform in one second about 3 million calculations for every per-
son on the planet! And supercomputing upper limits are growing quickly.

Computers (i.e., hardware) process data under the control of sequences of instructions
called computer programs. These programs guide the computer through actions specified by
people called computer programmers. The programs that run on a computer are referred to
as software. In this book, you’ll learn several key programming methodologies that are
enhancing programmer productivity, thereby reducing software development costs—object-
oriented programming, generic programming, functional programming and structured program-
ming. You’ll build C# apps (short for applications) for a variety of environments including
the desktop, mobile devices like smartphones and tablets, and even “the cloud.”

Computers consist of devices referred to as hardware (e.g., the keyboard, screen, mouse,
hard disks, memory, DVD drives and processing units). Computing costs are dropping dra-
matically, due to rapid developments in hardware and software technologies. Computers that
filled large rooms and cost millions of dollars decades ago are now inscribed on silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon is one of the
most abundant materials on Earth—it’s an ingredient in common sand. Silicon-chip tech-
nology has made computing so economical that computers have become a commodity.

1.3.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially
with regard to the hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly.

Every year or two, the capacities of computers have approximately doubled inexpen-
sively. This remarkable trend often is called Moore’s Law, named for the person who iden-
tified it in the 1960s, Gordon Moore, co-founder of Intel—a leading manufacturer of the
processors in today’s computers and embedded systems. Moore’s Law and related obser-
vations apply especially to the amount of memory that computers have for programs, the
amount of secondary storage (such as disk storage) they have to hold programs and data
over longer periods of time, and their processor speeds—the speeds at which they execute
their programs (i.e., do their work). These increases make computers more capable, which
puts greater demands on programming-language designers to innovate.

Similar growth has occurred in the communications field—costs have plummeted as
enormous demand for communications bandwidth (i.e., information-carrying capacity)
has attracted intense competition. We know of no other fields in which technology
improves so quickly and costs fall so rapidly. Such phenomenal improvement is truly fos-
tering the Information Revolution.

2. http://www.top500.org.

M01_DEIT1540_06_SE_C01.fm Page 45 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

46 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.3.2 Computer Organization
Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.2).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer programs) from
input devices and places it at the disposal of the other units for processing. Most
user input is entered into computers through keyboards, touch screens and mouse
devices. Other forms of input include receiving voice commands, scanning images
and barcodes, reading from secondary storage devices (such as hard drives, DVD
drives, Blu-ray Disc™ drives and USB flash drives—also called “thumb drives” or
“memory sticks”), receiving video from a webcam and having your computer
receive information from the Internet (such as when you stream videos from You-
Tube® or download e-books from Amazon). Newer forms of input include posi-
tion data from a GPS device, motion and orientation information from an
accelerometer (a device that responds to up/down, left/right and forward/backward
acceleration) in a smartphone or game controller (such as Microsoft® Kinect® for
Xbox®, Wii™ Remote and Sony® PlayStation® Move) and voice input from
devices like Amazon Echo and the forthcoming Google Home.

Output unit This “shipping” section takes information the computer has processed and places
it on various output devices to make it available for use outside the computer.
Most information that’s output from computers today is displayed on screens
(including touch screens), printed on paper (“going green” discourages this),
played as audio or video on PCs and media players (such as Apple’s iPods) and
giant screens in sports stadiums, transmitted over the Internet or used to control
other devices, such as robots and “intelligent” appliances. Information is also
commonly output to secondary storage devices, such as solid-state drives (SSDs),
hard drives, DVD drives and USB flash drives. Popular recent forms of output
are smartphone and game-controller vibration, virtual reality devices like Oculus
Rift and Google Cardboard and mixed reality devices like Microsoft’s HoloLens.

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains information
that has been entered through the input unit, making it immediately available for
processing when needed. The memory unit also retains processed information
until it can be placed on output devices by the output unit. Information in the
memory unit is volatile—it’s typically lost when the computer’s power is turned
off. The memory unit is often called either memory, primary memory or RAM
(Random Access Memory). Main memories on desktop and notebook computers
contain as much as 128 GB of RAM, though 2 to 16 GB is most common. GB
stands for gigabytes; a gigabyte is approximately one billion bytes. A byte is eight
bits. A bit is either a 0 or a 1.

Arithmetic
and logic unit
(ALU)

This “manufacturing” section performs calculations, such as addition, subtrac-
tion, multiplication and division. It also contains the decision mechanisms that
allow the computer, for example, to compare two items from the memory unit to
determine whether they’re equal. In today’s systems, the ALU is implemented as
part of the next logical unit, the CPU.

Fig. 1.2 | Logical units of a computer. (Part 1 of 2.)

M01_DEIT1540_06_SE_C01.fm Page 46 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.4 Data Hierarchy 47

1.4 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from the simplest data items (called “bits”) to richer
data items, such as characters, fields, and so on. Figure 1.3 illustrates a portion of the data
hierarchy.

Bits
The smallest data item in a computer can assume the value 0 or the value 1. It’s called a
bit (short for “binary digit”—a digit that can assume one of two values). Remarkably, the
impressive functions performed by computers involve only the simplest manipulations of
0s and 1s—examining a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to
0 or from 0 to 1).

Characters
It’s tedious for people to work with data in the low-level form of bits. Instead, they prefer to
work with decimal digits (0–9), letters (A–Z and a–z), and special symbols (e.g., $, @, %, &, *,
(,), –, +, ", :, ? and /). Digits, letters and special symbols are known as characters. The com-
puter’s character set is the set of all the characters used to write programs and represent data
items. Computers process only 1s and 0s, so a computer’s character set represents every char-
acter as a pattern of 1s and 0s. C# supports various character sets (including Unicode®), with

Central
processing
unit (CPU)

This “administrative” section coordinates and supervises the operation of the
other sections. The CPU tells the input unit when information should be read
into the memory unit, tells the ALU when information from the memory unit
should be used in calculations and tells the output unit when to send information
from the memory unit to certain output devices. Many of today’s computers have
multiple CPUs and, hence, can perform many operations simultaneously. A mul-
ticore processor implements multiple processors on a single integrated-circuit
chip—a dual-core processor has two CPUs, a quad-core processor has four and an
octa-core processor has eight. Today’s desktop computers have processors that can
execute billions of instructions per second. Chapter 23 explores how to write
apps that can take full advantage of multicore architecture.

Secondary
storage unit

This is the long-term, high-capacity “warehousing” section. Programs or data not
actively being used by the other units normally are placed on secondary storage
devices (e.g., your hard drive) until they’re again needed, possibly hours, days,
months or even years later. Information on secondary storage devices is persis-
tent—it’s preserved even when the computer’s power is turned off. Secondary
storage information takes much longer to access than information in primary
memory, but its cost per unit is much less. Examples of secondary storage devices
include solid-state drives (SSDs), hard drives, DVD drives and USB flash drives,
some of which can hold over 2 TB (TB stands for terabytes; a terabyte is approx-
imately one trillion bytes). Typical hard drives on desktop and notebook comput-
ers hold up to 2 TB, and some desktop hard drives can hold up to 6 TB.

Logical unit Description

Fig. 1.2 | Logical units of a computer. (Part 2 of 2.)

M01_DEIT1540_06_SE_C01.fm Page 47 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

48 Chapter 1 Introduction to Computers, the Internet and Visual C#

some requiring more than one byte per character. Unicode supports many of the world’s lan-
guages, as well as emojis. See Appendix B for more information on the ASCII (American
Standard Code for Information Interchange) character set—the popular subset of Unicode
that represents uppercase and lowercase letters of the English alphabet, digits and some com-
mon special characters. We also provide an online appendix describing Unicode.

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A field
is a group of characters or bytes that conveys meaning. For example, a field consisting of
uppercase and lowercase letters can be used to represent a person’s name, and a field con-
sisting of decimal digits could represent a person’s age.

Records
Several related fields can be used to compose a record. In a payroll system, for example,
the record for an employee might consist of the following fields (possible types for these
fields are shown in parentheses):

• Employee or student identification number (a whole number).

• Name (a string of characters).

• Address (a string of characters).

Fig. 1.3 | Data hierarchy.

Tom Blue

Sally Black

Judy Green File

J u d y Field

Byte (ASCII character J)

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

M01_DEIT1540_06_SE_C01.fm Page 48 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.4 Data Hierarchy 49

• Hourly pay rate (a number with a decimal point).

• Year-to-date earnings (a number with a decimal point).

• Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. In the preceding example, all the fields belong
to the same employee. A company might have many employees and a payroll record for
each.

To facilitate the retrieval of specific records from a file, at least one field in each record
is chosen as a record key, which identifies a record as belonging to a particular person or
entity and distinguishes that record from all others. For example, in a payroll record, the
employee identification number normally would be the record key.

Files
A file is a group of related records. More generally, a file contains arbitrary data in arbitrary
formats. In some operating systems, a file is viewed simply as a sequence of bytes—any or-
ganization of the bytes in a file, such as organizing the data into records, is a view created
by the application programmer. It’s not unusual for an organization to have many files,
some containing billions, or even trillions, of characters of information.

Database
A database is a collection of data organized for easy access and manipulation. The most
popular model is the relational database, in which data is stored in simple tables. A table
includes records and fields. For example, a table of students might include first name, last
name, major, year, student ID number and grade-point-average fields. The data for each
student is a record, and the individual pieces of information in each record are the fields.
You can search, sort and otherwise manipulate the data based on its relationship to multiple
tables or databases. For example, a university might use data from the student database in
combination with data from databases of courses, on-campus housing, meal plans, etc.

Big Data
The amount of data being produced worldwide is enormous and growing quickly. Accord-
ing to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are created daily,3

and according to Salesforce.com, as of October 2015 90% of the world’s data was created
in just the prior 12 months!4 According to an IDC study, the global data supply will reach
40 zettabytes (equal to 40 trillion gigabytes) annually by 2020.5 Figure 1.4 shows some
common byte measurements. Big data applications deal with massive amounts of data and
this field is growing quickly, creating lots of opportunity for software developers. Accord-
ing to a study by Gartner Group, over four million IT jobs globally were expected to sup-
port big data in 2015.6

3. http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html.
4. https://www.salesforce.com/blog/2015/10/salesforce-channel-ifttt.html.
5. http://recode.net/2014/01/10/stuffed-why-data-storage-is-hot-again-really/.
6. http://fortune.com/2013/09/04/the-big-data-employment-boom/.

M01_DEIT1540_06_SE_C01.fm Page 49 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

50 Chapter 1 Introduction to Computers, the Internet and Visual C#

1.5 Machine Languages, Assembly Languages and High-
Level Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps.

Machine Languages
Any computer can directly understand only its own machine language (also called ma-
chine code), defined by its hardware architecture. Machine languages generally consist of
numbers (ultimately reduced to 1s and 0s). Such languages are cumbersome for humans.

Assembly Languages
Programming in machine language was simply too slow and tedious for most program-
mers. Instead, they began using English-like abbreviations to represent elementary opera-
tions. These abbreviations formed the basis of assembly languages. Translator programs
called assemblers were developed to convert assembly-language programs to machine lan-
guage. Although assembly-language code is clearer to humans, it’s incomprehensible to
computers until translated to machine language. Assembly languages are still popular to-
day in applications where minimizing memory use and maximizing execution efficiency is
crucial.

High-Level Languages
To speed up the programming process further, high-level languages were developed in
which single statements could be written to accomplish substantial tasks. High-level lan-
guages, such as C#, Visual Basic, C, C++, Java and Swift, allow you to write instructions
that look more like everyday English and contain commonly used mathematical notations.
Translator programs called compilers convert high-level language programs into machine
language.

The process of compiling a large high-level-language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly (without the need for compilation),
although more slowly than compiled programs. Scripting languages such as the popular
web languages JavaScript and PHP are processed by interpreters.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 (1024) bytes exactly

 1 megabyte (MB) 1024 kilobytes 106 (1,000,000) bytes

 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000) bytes

 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000) bytes

 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000) bytes

 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000) bytes

 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000) bytes

Fig. 1.4 | Byte measurements.

M01_DEIT1540_06_SE_C01.fm Page 50 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.6 Object Technology 51

1.6 Object Technology
C# is an object-oriented programming language. In this section we’ll introduce the basics
of object technology.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more
precisely—as we’ll see in Chapter 4—the classes objects come from, are essentially reusable
software components. There are date objects, time objects, audio objects, video objects,
automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software developers have discovered that using
a modular, object-oriented design-and-implementation approach can make software-
development groups much more productive than was possible with earlier techniques—
object-oriented programs are often easier to understand, correct and modify.

The Automobile as an Object
Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel hides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be built from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts. Per-
forming a task in a program requires a method. The method houses the program statements
that actually perform the task. It hides these statements from its user, just as a car’s accelerator
pedal hides from the driver the mechanisms of making the car go faster. In C#, we create a
program unit called a class to house the set of methods that perform the class’s tasks. For ex-
ample, a class that represents a bank account might contain one method to deposit money to
an account and another to withdraw money from an account. A class is similar in concept to
a car’s engineering drawings, which house the design of an accelerator pedal, steering wheel,
and so on.

Performance Tip 1.1
Interpreters have an advantage over compilers in Internet scripting. An interpreted pro-
gram can begin executing as soon as it’s downloaded to the client’s machine, without need-
ing to be compiled before it can execute. On the downside, interpreted scripts generally run
slower and consume more memory than compiled code. With a technique called JIT (just-
in-time) compilation, interpreted languages can often run almost as fast as compiled ones.

M01_DEIT1540_06_SE_C01.fm Page 51 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

52 Chapter 1 Introduction to Computers, the Internet and Visual C#

Making Objects from Classes
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing (to locate problems), debugging (to correct those problems) and performance
tuning. Just as the notion of interchangeable parts was crucial to the Industrial Revolution,
reusable classes are crucial to the software revolution that’s been spurred by object tech-
nology.

Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Properties, get Accessors and set Accessors
Attributes are not necessarily accessible directly. The car manufacturer does not want driv-
ers to take apart the car’s engine to observe the amount of gas in its tank. Instead, the driver
can check the fuel gauge on the dashboard. The bank does not want its customers to walk
into the vault to count the amount of money in an account. Instead, the customers talk to
a bank teller or check personalized online bank accounts. Similarly, you do not need to
have access to an object’s instance variables in order to use them. You should use the prop-
erties of an object. Properties contain get accessors for reading the values of variables, and
set accessors for storing values into them.

M01_DEIT1540_06_SE_C01.fm Page 52 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.7 Internet and World Wide Web 53

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects created from those
classes—an object’s attributes and methods are intimately related. Objects may commu-
nicate with one another, but they’re normally not allowed to know how other objects are
implemented—implementation details are hidden within the objects themselves. This in-
formation hiding, as we’ll see, is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in C#. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones
we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of thousands of software developers building the
next generation of the U.S. air traffic control system? For projects so large and complex,
you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like C# are object ori-
ented—programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Although many different OOAD processes exist, a single graphical language for commu-
nicating the results of any OOAD process has come into wide use. This language, known
as the Unified Modeling Language (UML), is now the most widely used graphical scheme
for modeling object-oriented systems. We present our first UML diagrams in Chapters 4
and 5, then use them in our deeper treatment of object-oriented programming through
Chapter 12. In our optional ATM Software Engineering Case Study in the online chapters,
we present a simple subset of the UML’s features as we guide you through an object-ori-
ented design and implementation experience.

1.7 Internet and World Wide Web
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United States
Department of Defense—rolled out plans for networking the main computer systems of

M01_DEIT1540_06_SE_C01.fm Page 53 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

54 Chapter 1 Introduction to Computers, the Internet and Visual C#

approximately a dozen ARPA-funded universities and research institutions. The comput-
ers were to be connected with communications lines operating at speeds on the order of
50,000 bits per second, a stunning rate at a time when most people (of the few who even
had networking access) were connecting over telephone lines to computers at a rate of 110
bits per second. Academic research was about to take a giant leap forward. ARPA proceed-
ed to implement what quickly became known as the ARPANET, the precursor to today’s
Internet. Today’s fastest Internet speeds are on the order of billions of bits per second with
trillion-bits-per-second speeds on the horizon!

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the capa-
bility for quick and easy communication via what came to be known as electronic mail (e-
mail). This is true even on today’s Internet, with e-mail, instant messaging, file transfer
and social media such as Facebook and Twitter enabling billions of people worldwide to
communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became known as
the Transmission Control Protocol (TCP). TCP ensured that messages, consisting of
sequentially numbered pieces called packets, were properly routed from sender to receiver,
arrived intact and were assembled in the correct order.

The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were imple-
menting their own networks for both intraorganization (that is, within an organization)
and interorganization (that is, between organizations) communication. A huge variety of
networking hardware and software appeared. One challenge was to enable these different
networks to communicate with each other. ARPA accomplished this by developing the In-
ternet Protocol (IP), which created a true “network of networks,” the current architecture
of the Internet. The combined set of protocols is now called TCP/IP.

Businesses rapidly realized that by using the Internet, they could improve their oper-
ations and offer new and better services to their clients. Companies started spending large
amounts of money to develop and enhance their Internet presence. This generated fierce
competition among communications carriers and hardware and software suppliers to meet
the increased infrastructure demand. As a result, bandwidth—the information-carrying
capacity of communications lines—on the Internet has increased tremendously, while
hardware costs have plummeted.

The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and software
associated with the Internet that allows computer users to locate and view multimedia-
based documents (documents with various combinations of text, graphics, animations, au-
dios and videos) on almost any subject. In 1989, Tim Berners-Lee of CERN (the Europe-
an Organization for Nuclear Research) began developing HyperText Markup Language
(HTML)—the technology for sharing information via “hyperlinked” text documents. He
also wrote communication protocols such as HyperText Transfer Protocol (HTTP) to
form the backbone of his new hypertext information system, which he referred to as the
World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium (W3C, http://
www.w3.org), devoted to developing web technologies. One of the W3C’s primary goals

M01_DEIT1540_06_SE_C01.fm Page 54 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

1.8 C# 55

is to make the web universally accessible to everyone regardless of disabilities, language or
culture.

Web Services
Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by combining com-
plementary web services, often from multiple organizations, and possibly other forms of
information feeds. For example, 100 Destinations (http://www.100destinations.co.uk)
combines the photos and tweets from Twitter with the mapping capabilities of Google Maps
to allow you to explore countries around the world through the photos of others.

ProgrammableWeb (http://www.programmableweb.com/) provides a directory of over
15,000 APIs and 6,200 mashups, plus how-to guides and sample code for creating your own
mashups. According to Programmableweb, the three most widely used APIs for mashups are
Google Maps, Twitter and YouTube.

Ajax
Ajax technology helps Internet-based applications perform like desktop applications—a
difficult task, given that such applications suffer transmission delays as data is shuttled
back and forth between your computer and server computers on the Internet. Using Ajax,
applications like Google Maps have achieved excellent performance, approaching the
look-and-feel of desktop applications.

The Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things. A thing
is any object with an IP address—a unique identifier that helps locate that thing on the
Internet—and the ability to send data automatically over the Internet. Such things in-
clude:

• a car with a transponder for paying tolls,

• monitors for parking-space availability in a garage,

• a heart monitor implanted in a human,

• monitors for drinkable water quality,

• a smart meter that reports energy usage,

• radiation detectors,

• item trackers in a warehouse,

• mobile apps that can track your movement and location,

• smart thermostats that adjust room temperatures based on weather forecasts and
activity in the home

• and many more.

1.8 C#
In 2000, Microsoft announced the C# programming language. C# has roots in the C, C++
and Java programming languages. It has similar capabilities to Java and is appropriate for

M01_DEIT1540_06_SE_C01.fm Page 55 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

56 Chapter 1 Introduction to Computers, the Internet and Visual C#

the most demanding app-development tasks, especially for building today’s desktop apps,
large-scale enterprise apps, and web-based, mobile and cloud-based apps.

1.8.1 Object-Oriented Programming
C# is object oriented—we’ve discussed the basics of object technology and we present a rich
treatment of object-oriented programming throughout the book. C# has access to the
powerful .NET Framework Class Library—a vast collection of prebuilt classes that enable
you to develop apps quickly (Fig. 1.5). We’ll say more about .NET in Section 1.9.

1.8.2 Event-Driven Programming
C# graphical user interfaces (GUIs) are event driven. You can write programs that respond
to user-initiated events such as mouse clicks, keystrokes, timer expirations and touches and
finger swipes—gestures that are widely used on smartphones and tablets.

1.8.3 Visual Programming
Microsoft’s Visual Studio enables you to use C# as a visual programming language—in
addition to writing program statements to build portions of your apps, you’ll also use
Visual Studio to conveniently drag and drop predefined GUI objects like buttons and text-
boxes into place on your screen, and label and resize them. Visual Studio will write much
of the GUI code for you.

1.8.4 Generic and Functional Programming
Generic Programming
It’s common to write a program that processes a collection of things—e.g., a collection of
numbers, a collection of contacts, a collection of videos, etc. Historically, you had to pro-
gram separately to handle each type of collection. With generic programming, you write code
that handles a collection “in the general” and C# handles the specifics for each different type
of collection, saving you a great deal of work. We’ll study generics and generic collections in
Chapters 20 and 21.

Some key capabilities in the .NET Framework Class Library

Database Debugging

Building web apps Multithreading

Graphics File processing

Input/output Security

Computer networking Web communication

Permissions Graphical user interface

Mobile Data structures

String processing Universal Windows Platform GUI

Fig. 1.5 | Some key capabilities in the .NET Framework Class Library.

M01_DEIT1540_06_SE_C01.fm Page 56 Saturday, November 12, 2016 1:16 PM

Sam
ple

 p
ag

es

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Thomson Learning Techno Task Force settings for Acrobat 6. To be used by Compositors for all Thomson Learning approved Print vendors. January 2005.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

